PHYS 480/581
 General Relativity

Homework Assignment 3 Solutions

Question 1 (7 points).
Imagine we have a tensor (matrix) $X^{\mu \nu}$ and a vector V^{μ}, with components

$$
X^{\mu \nu}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \tag{1}\\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), \quad V^{\mu}=(-1,2,0,-2)
$$

Assuming that these two objects live in flat spacetime with a Minkowski metric $\eta_{\mu \nu}$, find the components of:
(a) $X^{\mu}{ }_{\nu}$

Solutions:

$$
X^{\mu}{ }_{\nu}=X^{\mu \alpha} \eta_{\alpha \nu}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \tag{2}\\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
-2 & 0 & 1 & -1 \\
1 & 0 & 3 & 2 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & -2
\end{array}\right)
$$

(b) $X_{\mu}{ }^{\nu}$

Solutions:

$$
X_{\mu}{ }^{\nu}=\eta_{\mu \alpha} X^{\alpha \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \tag{3}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right)=\left(\begin{array}{cccc}
-2 & 0 & -1 & 1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right)
$$

(c) $X^{(\mu \nu)} \equiv \frac{1}{2}\left(X^{\mu \nu}+X^{\nu \mu}\right)$

Solutions:

$$
X^{(\mu \nu)}=\frac{1}{2}\left(\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \tag{4}\\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right)+\left(\begin{array}{cccc}
2 & -1 & -1 & -2 \\
0 & 0 & 1 & 1 \\
1 & 3 & 0 & 1 \\
-1 & 2 & 0 & -2
\end{array}\right)\right)=\left(\begin{array}{cccc}
2 & -\frac{1}{2} & 0 & -\frac{3}{2} \\
-\frac{1}{2} & 0 & 2 & \frac{3}{2} \\
0 & 2 & 0 & \frac{1}{2} \\
-\frac{3}{2} & \frac{3}{2} & \frac{1}{2} & -2
\end{array}\right) .
$$

(d) $X_{[\mu \nu]} \equiv \frac{1}{2}\left(X_{\mu \nu}-X_{\nu \mu}\right)$

Solutions: First, let's find $X_{\mu \nu}$

$$
\begin{align*}
X_{\mu \nu} & =\eta_{\mu \alpha} X^{\alpha \beta} \eta_{\beta \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{5}\\
& =\left(\begin{array}{cccc}
2 & 0 & -1 & 1 \\
1 & 0 & 3 & 2 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & -2
\end{array}\right) . \tag{6}
\end{align*}
$$

Thus,

$$
X_{[\mu \nu]}=\frac{1}{2}\left(\left(\begin{array}{cccc}
2 & 0 & -1 & 1 \tag{7}\\
1 & 0 & 3 & 2 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & -2
\end{array}\right)-\left(\begin{array}{cccc}
2 & 1 & 1 & 2 \\
0 & 0 & 1 & 1 \\
-1 & 3 & 0 & 1 \\
1 & 2 & 0 & -2
\end{array}\right)\right)=\left(\begin{array}{cccc}
0 & -\frac{1}{2} & -1 & -\frac{1}{2} \\
\frac{1}{2} & 0 & 1 & \frac{1}{2} \\
1 & -1 & 0 & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) .
$$

(e) $X^{\lambda}{ }_{\lambda}$

Solutions:

$$
X_{\lambda}^{\lambda}=X^{\lambda \alpha} \eta_{\alpha \lambda}=\operatorname{Tr}\left[\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \tag{8}\\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right]=-4 .
$$

(f) $V^{\mu} V_{\mu}$

Solutions:

$$
\begin{equation*}
V^{\mu} V_{\mu}=\eta_{\mu \nu} V^{\mu} V^{\nu}=-\left(V^{0}\right)^{2}+\left(V^{1}\right)^{2}+\left(V^{2}\right)^{2}+\left(V^{3}\right)^{2}=7 . \tag{9}
\end{equation*}
$$

(g) $V_{\mu} X^{\mu \nu}$

Solutions:

$$
\begin{align*}
V_{\mu} X^{\mu \nu} & =V^{\alpha} \eta_{\alpha \mu} X^{\mu \nu}=(-1,2,0,-2)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right) \tag{10}\\
& =(4,-2,5,7) . \tag{11}
\end{align*}
$$

Question 2 (2 points).
The electromagnetic Lagrangian density is $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$. With the help of Eq. (4.14) in Moore, write down \mathcal{L} in terms of the \vec{E} and \vec{B} field components.
Solutions: First, the components of $F_{\mu \nu}$ are given by

$$
F_{\mu \nu}=\eta_{\mu \alpha} F^{\alpha \beta} \eta_{\beta \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \tag{12}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and thus

$$
\begin{gather*}
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) \tag{13}\\
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}=-\frac{1}{4}\left(F_{0 i} F^{0 i}+F_{i 0} F^{i 0}+F_{i j} F^{i j}\right) \tag{14}\\
=-\frac{1}{4}\left(2 F_{0 i} F^{0 i}+2 \sum_{j>i} F_{i j} F^{i j}\right), \tag{15}
\end{gather*}
$$

where we use the antisymmetric nature of $F^{\mu \nu}$ to realize that $F_{0 i} F^{0 i}=F_{i 0} F^{i 0}$. Thus

$$
\begin{align*}
\mathcal{L} & =-\frac{1}{2}\left(-E_{x}^{2}-E_{y}^{2}-E_{z}^{2}+B_{x}^{2}+B_{y}^{2}+B_{z}^{2}\right) \tag{16}\\
& =\frac{1}{2}\left(|\vec{E}|^{2}-|\vec{B}|^{2}\right) . \tag{17}
\end{align*}
$$

Question 3 (5 points).
Moore Problem 5.5

Solutions:

(a) Lines of constant u and w looks like this:

Figure 1: Lines of constant u and w in cartesian coordinates.
(b) The metric in the primed (u, w) coordinates is

$$
\begin{equation*}
g_{\alpha \beta}^{\prime}=\frac{\partial x^{\mu}}{\partial x^{\prime \alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime \beta}} \eta_{\mu \nu} \tag{18}
\end{equation*}
$$

where $\eta_{\mu \nu}$ is the Minkowski metric. The inverse relation between the cartesian coordinates and the (u, w) coordinates are

$$
\begin{equation*}
x=u, \quad y=w+A \sin (b u) . \tag{19}
\end{equation*}
$$

Let's work out each component separately.

$$
\begin{align*}
g_{u u}^{\prime} & =\left(\frac{\partial x}{\partial u}\right)^{2} \eta_{x x}+\left(\frac{\partial y}{\partial u}\right)^{2} \eta_{y y} \tag{20}\\
& =1+A^{2} b^{2} \cos ^{2}(b u) \tag{21}\\
g_{u w}^{\prime} & =g_{w u}^{\prime}=\frac{\partial x}{\partial u} \frac{\partial x}{\partial w} \eta_{x x}+\frac{\partial y}{\partial u} \frac{\partial y}{\partial w} \eta_{y y} \tag{22}\\
& =A b \cos (b u) \tag{23}\\
g_{w w}^{\prime} & =\left(\frac{\partial x}{\partial w}\right)^{2} \eta_{x x}+\left(\frac{\partial y}{\partial w}\right)^{2} \eta_{y y} \tag{24}\\
& =1 \tag{25}
\end{align*}
$$

Thus, the metric in the (u, w) coordinate system is

$$
g_{\alpha \beta}^{\prime}=\left(\begin{array}{cc}
1+A^{2} b^{2} \cos ^{2}(b u) & A b \cos (b u) \tag{26}\\
A b \cos (b u) & 1
\end{array}\right) .
$$

This metric is not diagonal.
(c) The transformation property for a vector is

$$
\begin{equation*}
v^{\prime \alpha}=\frac{\partial x^{\prime \alpha}}{\partial x^{\mu}} v^{\mu} \tag{27}
\end{equation*}
$$

with $v^{x}=v$ and $v^{y}=0$. We thus have

$$
\begin{gather*}
v^{\prime u}=\frac{\partial u}{\partial x} v^{x}=v \tag{28}\\
v^{\prime w}=\frac{\partial w}{\partial x} v^{x}=-A b \cos (b x) v=-A b v \cos (b v t) . \tag{29}
\end{gather*}
$$

(d) The inner product $\boldsymbol{v} \cdot \boldsymbol{v}$ should be the same the same in every frame. In the cartesian frame it is of course $\boldsymbol{v} \cdot \boldsymbol{v}=v^{2}$. In the (u, w) frame, it is given by

$$
\begin{align*}
\boldsymbol{v} \cdot \boldsymbol{v} & =g_{\alpha \beta}^{\prime} v^{\prime \alpha} v^{\prime \beta} \tag{30}\\
& =g_{u u}^{\prime}\left(v^{\prime u}\right)^{2}+2 g_{u w}^{\prime} v^{\prime u} v^{\prime w}+g_{w w}^{\prime}\left(v^{\prime w}\right)^{2} \tag{31}\\
& =\left(1+A^{2} b^{2} \cos ^{2}(b u)\right) v^{2}+2 A b \cos (b u) v(-A b v \cos (b v t))+(-A b v \cos (b v t))^{2} \tag{32}\\
& =v^{2}+A^{2} b^{2} v^{2} \cos ^{2}(b v t)-2 A^{2} b^{2} v^{2} \cos ^{2}(b v t)+A^{2} b^{2} v^{2} \cos ^{2}(b v t) \tag{33}\\
& =v^{2}, \tag{34}
\end{align*}
$$

where we used $u=x=v t$. So, of course, the inner product $\boldsymbol{v} \cdot \boldsymbol{v}$ is the same in the (u, w) frame. $v^{\prime w}$ is not a constant since the $\mathbf{e}_{(u)}$ basis vector keeps changing direction as one moves in the (x, y) plane, which should be apparent from Fig. 1. Since the vector \boldsymbol{v} is constant, the component $v^{\prime w}$ has to keep changing to compensate for the fact that the $\mathbf{e}_{(u)}$ basis vector changes from point to point.
(e) Since \boldsymbol{v} is a constant vector, then we must have $\boldsymbol{a}=d \boldsymbol{v} / d t=0$. This is obviously true in the cartesian system. But we know that

$$
\begin{equation*}
\frac{d v^{\prime w}}{d t}=A b^{2} v^{2} \sin (b v t) \neq 0 \tag{35}
\end{equation*}
$$

So, if we were to write

$$
\begin{equation*}
\boldsymbol{a} \stackrel{?}{=} \frac{d v^{\prime u}}{d t} \mathbf{e}_{(u)}+\frac{d v^{\prime w}}{d t} \mathbf{e}_{(w)}=\frac{d v^{\prime w}}{d t} \mathbf{e}_{(w)} \neq 0 \tag{36}
\end{equation*}
$$

we would get something nonzero, in contradiction with the fact that \boldsymbol{v} is a constant vector. To resolve this, we need to remember that $\mathbf{e}_{(u)}$ is not a constant vector. This means that the acceleration is really given by

$$
\begin{align*}
\boldsymbol{a} & =\frac{d}{d t}\left(v^{\prime u} \mathbf{e}_{(u)}+v^{\prime w} \mathbf{e}_{(w)}\right) \tag{37}\\
& =\frac{d v^{\prime u}}{d t} \mathbf{e}_{(u)}+v^{\prime u} \frac{d \mathbf{e}_{(u)}}{d t}+\frac{d v^{\prime w}}{d t} \mathbf{e}_{(w)}+v^{\prime w} \frac{d \mathbf{e}_{(w)}}{d t} \tag{38}\\
& =v^{\prime u} \frac{d \mathbf{e}_{(u)}}{d t}+\frac{d v^{\prime w}}{d t} \mathbf{e}_{(w)} . \tag{39}
\end{align*}
$$

Now, both of the terms in the last line are not zero. In fact, they are equal and opposite, resulting in $\boldsymbol{a}=0$ as it should. So indeed, $d v^{\prime w} / d t$ is not the w-component of the acceleration.

