
Physics 480/581
General Relativity

Homework Assignment 4 Solutions

Question 1 (2 points).

Given any two vectors p and q, one defines the second-rank tensor T = p⊗q (where ⊗ denotes the
tensor product) to be a “machine” that takes in two one-forms (dual vectors) σ and λ and returns
a number

T (σ,λ) = (σ · p)(λ · q), (1)

where σ · p = σµp
µ and similarly for λ · q.

Show that the components of T = p⊗ q are the product of the components of p and q

Tµν = pµqν , T ν
µ = pµq

ν , Tµν = pµqν . (2)

Solution:
The first thing to realize is that

σ · p = σµp
µ = gµασ

αpµ = σαpµgµα = σαpα = σµpµ, (3)

and similarly for λ · q. Thus,

T (σ,λ) = (σ · p)(λ · q)
= σµp

µλνq
ν = pµqνσµλν = Tµνσµλν (4)

= σµpµλνq
ν = pµq

νσµλν = T ν
µ σµλν (5)

= σµpµλ
νqν = pµqνσ

µλν = Tµνσ
µλν , (6)

from which we get
Tµν = pµqν , T ν

µ = pµq
ν , Tµν = pµqν . (7)

Question 2 (3 points).

Let Aµν be an antisymmetric tensor such that Aµν = −Aνµ, and let Sµν be a symmetric tensor
such that Sµν = Sνµ.

(a) Show that the trace of an antisymmetric tensor, Aµµ, is always zero.
Solution:
We have

Aµµ = gµνAνµ = gνµAνµ. (8)

Now the inverse metric is a symmetric tensor such that gµν = gνµ. Per the result of part (a),
we know that the contraction of a symmetric tensor with an antisymmetric tensor is always
zero. Thus, Aµµ = 0.
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(b) For an arbitrary tensor Vµν , show what

V µνAµν =
1

2
(V µν − V νµ)Aµν = V [µν]Aµν , V µνSµν =

1

2
(V µν + V νµ)Sµν = V (µν)Sµν

(9)
Solution:
For an antisymmetric tensor, first note that

Aµν =
1

2
(Aµν −Aνµ) . (10)

We thus have

V µνAµν = V µν 1

2
(Aµν −Aνµ)

=
1

2
(V µνAµν − V µνAνµ)

=
1

2
(V µνAµν − V νµAµν)

=
1

2
(V µν − V νµ)Aµν , (11)

where in the third line we have relabelled µ→ ν and ν → µ in the last term. For a symmetric
tensor, we can always write

Sµν =
1

2
(Sµν + Sνµ) . (12)

We thus have

V µνSµν = V µν 1

2
(Sµν + Sνµ)

=
1

2
(V µνSµν + V µνSνµ)

=
1

2
(V µνSµν + V νµSµν)

=
1

2
(V µν + V νµ)Sµν , (13)

where in the third line we have relabelled µ→ ν and ν → µ in the last term.

(c) Show that a second-rank tensor can always be reconstructed from it’s symmetric and anti-
symmetric parts,

Vµν = V(µν) + V[µν]. (14)

Solution:
Direct calculation:

V(µν) + V[µν] =
1

2
(Vµν + Vνµ) +

1

2
(Vµν − Vνµ)

=
1

2
(Vµν + Vµν) +

1

2
(Vνµ − Vνµ)

= Vµν . (15)
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Question 3 (4 points).

[This question has a lot of text, but the calculations involved are rather short. This is
really about learning important aspects of coordinate basis vectors.] We have discussed
that vectors defined at some point p on some manifold M lives in the tangent space TpM . We
also introduced basis vectors for this tangent space {e(µ)}, such that vectors can be written as
p = pµe(µ). Here, we would like to formalize the notion of this tangent space.

Let’s consider a point (event) p on some manifold M , and imagine that we have a smooth function
f :M → R defined on this manifold. Then, consider the set of all parametrized curves (worldlines)
{xµi (λi)} passing through p, where i is labeling the different curves. We notice that all these curves
passing through p each define an operator through this space called the directional derivative, which
maps f → df/dλi at p. The tangent space TpM can be identified with the space of
directional derivative operators alongs curves at p.

To show that this is true, we must demonstrate that the space of directional derivative is indeed
a vector space, and that this is the vector space we want. Showing that this is a vector space is
straightforward. Take two directional derivative operators d/dλ1 and d/dλ2 representing derivatives
through two curves xµ1 (λ1) and xµ2 (λ2) at p. We can certainly build a new directional derivative
operator at p

d

dη
= a

d

dλ1
+ b

d

dλ2
, (16)

where a, b are real numbers. So, directional derivatives behave like vectors. The question is whether
d/dη itself is an actual directional derivative operator. To answer this question, we need to show
that d/dη behaves like a standard derivative operators, that is, that it acts linearly on function and
obeys the product rule. The linearity is manifest, but we need to show that it satisfied the product
rule.

(a) Show that for two functions smooth f and g defined on M , we indeed have:

d

dη
(fg) = g

df

dη
+ f

dg

dη
. (17)

Solutions:
A direct calculation yields

d

dη
(fg) =

(
a
d

dλ1
+ b

d

dλ2

)
(fg)

= g

(
a
df

dλ1
+ b

df

dλ2

)
+ f

(
a
dg

dλ1
+ b

dg

dλ2

)
= g

df

dη
+ f

dg

dη
. (18)

(b) Having established that the space of directional derivatives at point p is indeed a vector space,
we need to find a basis for this space. A simple application of the chain rule for an arbitrary
smooth function f defined on M yields

df

dλ
=
dxµ

dλ

∂f

∂xµ
=
dxµ

dλ
∂µf, (19)
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where we have used the common notation ∂µ ≡ ∂/∂xµ. Since this is true for an arbitrary
function f , we have

d

dλ
=
dxµ

dλ
∂µ. (20)

The above says that we can expand any directional derivative operator in a basis spanned by
the partial derivatives {∂µ}. If TpM is identified as the space of directional derivatives at p,
it follows that a natural basis for this tangent space are the partial derivatives, i.e. e(µ) = ∂µ.

With this choice, we naturally have the right number of basis vectors (one per coordinate),
and the correct transformation law for basis vectors under the coordinate transform xµ → x′µ

∂′µ =
∂xν

∂x′µ
∂ν , (21)

which follows from the chain rule. This is identical to what we saw in class

e′(µ) =
∂xν

∂x′µ
e(ν). (22)

Thus, the partial derivatives {∂µ} form a natural basis for TpM . Then, any vector u and
v at point p can be expanded in this basis, u = uµ∂µ and v = vµ∂µ. Now, you may be
frowning at this. Are vectors differential operators?? Yes! Every vector we write down defines
a directional derivative operator at point p. The action of a vector on a function f is rather
natural

u(f) = uµ∂µf, (23)

which is indeed the directional derivative of f along the vector u. So basically, you need
to rewire your brain to think that vectors are machines that are eagerly awaiting to take
directional derivatives of any functions they encounter. But we don’t have to restrict ourselves
to functions, we can also take directional derivatives of other vectors. For instance, consider
the commutator [u,v] (also known as the Lie bracket), which is defined via

[u,v](f) ≡ u(v(f))− v(u(f)). (24)

Show that the components of this commutator are

[u,v]µ = uλ∂λv
µ − vλ∂λuµ. (25)

Solutions:
First note that [u,v] is a vector, and can thus be written as

[u,v] = [u,v]µ∂µ. (26)

To derive this, let’s apply the commutator on a scalar function f

[u,v](f) = [uµ∂µ, v
ν∂ν ]f

= uµ∂µ(v
ν∂νf)− vν∂ν(uµ∂µf)

= (∂νf)u
µ(∂µv

ν) + vνuµ(∂µ∂νf)− (∂µf)v
ν(∂νu

µ)− uµvν(∂ν∂µf)
= (∂νf)u

µ(∂µv
ν)− (∂µf)v

ν(∂νu
µ)

= (uµ(∂µv
ν)∂ν − vν(∂νuµ)∂µ) f

=
(
uλ(∂λv

µ)∂µ − vλ(∂λuµ)∂µ
)
f

=
(
uλ(∂λv

µ)− vλ(∂λuµ)
)
∂µf = [u,v]µ∂µf, (27)
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from which we get
[u,v]µ = uλ∂λv

µ − vλ∂λuµ. (28)

(c) Having found a natural basis for TpM , the question is now to find a basis for the dual space
T ∗pM . Consider the total differential (usually referred to as the gradient) of a function f

df = (∂µf)dx
µ (29)

This is reminiscent of a dual vector (or one-form) like ω = ωµe
(µ), with component ∂µf and

basis vectors dxµ. Demonstrate that the gradient above is indeed a dual vector by showing that
both components and basis vectors transform in the proper way (using the transformations
we saw in class). This means that any dual vector (one-form) can be written as ω = ωµdx

µ.
Because of this, one-forms (and higher order forms) play an important role in integration over
manifolds.

Solutions:
We need to show that ∂µf transforms like a dual vector, and that dxµ transforms like a dual
basis vector. Under the coordinate change xµ → x′µ and using the chain rule, we obtain

∂′µf =
∂f

∂x′µ
=
∂xν

∂x′µ
∂f

∂xν
=
∂xν

∂x′µ
∂νf, (30)

which in indeed the transformation law of a dual vector. For the dual basis vectors, we can
again use the chain rule,

dx′µ =
∂x′µ

∂xν
dxν , (31)

which is indeed the transformation law for dual basis vectors.


