PHYS 480/581 General Relativity

Homework Assignment 5
Due date: Wednesday $02 / 21 / 2024$ 5pm, submitted electronically on UNM Canvas

Question 1 (4 points).
Consider adding to the Lagrangian of electromagnetism an additional term of the form $\mathcal{L}^{\prime}=$ $\tilde{\epsilon}_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}=\tilde{F}_{\rho \sigma} F^{\rho \sigma}$. Here, $\tilde{F}_{\rho \sigma}$ is called the Hodge dual of the standard electromagnetic field strength $F_{\rho \sigma}=\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}$, and $\tilde{\epsilon}_{\mu \nu \rho \sigma}$ is the Levi-Civita symbol.
(a) Express \mathcal{L}^{\prime} in terms of the \vec{E} and \vec{B} fields.
(b) Using the Euler-Lagrange equation for the vector potential A^{μ}

$$
\begin{equation*}
\frac{\partial \mathcal{L}_{\mathrm{em}}}{\partial A_{\nu}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}_{\mathrm{em}}}{\partial\left(\partial_{\mu} A_{\nu}\right)}\right)=0, \tag{1}
\end{equation*}
$$

and the solution from the extra problem $\# 4$, show that including \mathcal{L}^{\prime} does not affect Maxwell's equations. Here, $\mathcal{L}_{\mathrm{em}}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+A_{\mu} J^{\mu}+\mathcal{L}^{\prime}$. Can you provide a deep reason why?

Question 2 (4 points).
A quantity that we will need in the near future is the determinant of the metric $\operatorname{det}(g)$. In a 4 -dimensional spacetime, this determinant can be computed via the relation

$$
\begin{equation*}
\tilde{\epsilon}^{\mu \nu \alpha \beta} g_{\mu \gamma} g_{\nu \delta} g_{\alpha \sigma} g_{\beta \rho}=\operatorname{det}(g) \tilde{\epsilon}_{\gamma \delta \sigma \rho}, \tag{2}
\end{equation*}
$$

which is just the standard expression for the determinant of a 4×4 matrix.
(a) Show that for a diagonal metric, the above expression simply gives that det (g) is just the product of the diagonal elements of $g_{\mu \nu}$.
(b) While $\operatorname{det}(g)$ is a scalar function, it is not a Lorentz scalar, meaning that it takes different values in different inertial reference frames. Using the transformation for the Levi-Civita symbol under a coordinate transform $x^{\mu} \rightarrow x^{\prime \mu}$

$$
\begin{equation*}
\tilde{\epsilon}_{\alpha \beta \gamma \delta}^{\prime}=\left|\frac{\partial x^{\prime}}{\partial x}\right| \frac{\partial x^{\mu}}{\partial x^{\prime \alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime \beta}} \frac{\partial x^{\sigma}}{\partial x^{\prime \gamma}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}} \tilde{\epsilon}_{\mu \nu \sigma \rho}, \tag{3}
\end{equation*}
$$

show that

$$
\begin{equation*}
\operatorname{det}\left(g^{\prime}\right)=\left|\frac{\partial x^{\prime}}{\partial x}\right|^{-2} \operatorname{det}(g) \tag{4}
\end{equation*}
$$

where $\left|\frac{\partial x^{\prime}}{\partial x}\right|$ is the determinant of the Jacobian matrix for the coordinate transformation $x^{\mu} \rightarrow$ $x^{\prime \mu}$.
(c) Use Eqs. (3) and (4) above to show that

$$
\begin{equation*}
\epsilon_{\alpha \beta \gamma \delta}=\sqrt{\operatorname{det}(g)} \tilde{\epsilon}_{\alpha \beta \gamma \delta} \tag{5}
\end{equation*}
$$

is an actual tensor, unlike $\tilde{\epsilon}_{\alpha \beta \gamma \delta}$.

