
Physics 480/581
General Relativity

Homework Assignment 5 Solutions

Question 1 (4 points).

Consider adding to the Lagrangian of electromagnetism an additional term of the form L′ =
ε̃µνρσF

µνF ρσ = F̃ρσF
ρσ. Here, F̃ρσ is called the Hodge dual of the standard electromagnetic field

strength Fρσ = ∂ρAσ − ∂σAρ, and ε̃µνρσ is the Levi-Civita symbol.

(a) Express L′ in terms of the ~E and ~B fields.
Solutions:
Let’s use Moore’s convention for the electromagnetic field strength

Fµν =


0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 . (1)

Let’s compute each of the components of F̃ρσ = ε̃µνρσF
µν . Since F̃ρσ is antisymmetric, we

know it’s diagonal elements are zero. Its time-space components are

F̃0i = ε̃µν0iF
µν

= ε̃jk0iF
jk + ε̃kj0iF

kj , i 6= j 6= k, (no sum on j, k)

= 2ε̃jk0iF
jk, i 6= j 6= k, (no sum on j, k) (2)

where we used Latin indices (i, j, k) to represent spatial coordinates. We can write down the
3 possibilities here

F̃01 = 2ε̃2301F
23 = 2Bx, F̃02 = 2ε̃1302F

13 = 2(−1)(−By) = 2By, F̃03 = 2ε̃1203F
12 = 2Bz.

(3)
By antisymmetry, F̃i0 = −F̃0i. For the space-space components, we have

F̃ij = ε̃µνijF
µν

= ε̃0kijF
0k + ε̃k0ijF

k0, i 6= j 6= k, (no sum on k)

= 2ε̃0kijF
0k, i 6= j 6= k, (no sum on k). (4)

Writing down the three possibilities

F̃12 = 2ε̃0312F
03 = 2Ez, F̃13 = 2ε̃0213F

02 = −2Ey F̃23 = 2ε̃0123F
01 = 2Ex. (5)

Thus,

F̃µν = 2


0 Bx By Bz
−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0

 . (6)
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We can now work out the contraction F̃µνFµν

F̃µνF
µν = 2F̃0iF

0i + 2F̃ijF
ij , j > i in last term

= 2(2BxEx + 2ByEy + 2BzEz) + 2(2EzBz + 2EyBy + 2ExBx)

= 8 ~E · ~B, (7)

where we used the antisymmetry to write, e.g., F̃0iF
0i + F̃i0F

i0 = 2F̃0iF
0i.

(b) Using the Euler-Lagrange equation for the vector potential Aµ

∂Lem
∂Aν

− ∂µ
(

∂Lem
∂(∂µAν)

)
= 0, (8)

and the solution from problem 3 in Homework 4, show that including L′ does not affect
Maxwell’s equations. Here, Lem = −1

4FµνF
µν + AµJ

µ + L′. Can you provide a deep reason
why?
Solutions:
When working this kind of Euler-Lagrange problems, we have to remember that Aµ and ∂νAµ
are considered independent variables. We clearly have that

∂L′

∂Aν
= 0 (9)

since L′ depends only on the derivatives of Aµ. So, if we can show that

∂µ

(
∂L′

∂(∂µAν)

)
= 0, (10)

then L′ won’t make any contribution to Maxwell’s equations. We have

∂L′

∂(∂µAν)
=

∂F̃ρσ
∂(∂µAν)

F ρσ + F̃ρσ
∂F ρσ

∂(∂µAν)

= ε̃αβρσ
∂Fαβ

∂(∂µAν)
F ρσ + ε̃αβρσF

αβ ∂F ρσ

∂(∂µAν)

= ε̃αβρσ
∂Fαβ

∂(∂µAν)
F ρσ + ε̃ρσαβF

αβ ∂F ρσ

∂(∂µAν)
, (11)

since ε̃αβρσ = ε̃ρσαβ (even number of permutations). We can relabel the dummy indices to
make both terms exactly the same

∂L′

∂(∂µAν)
= 2ε̃αβρσ

∂Fαβ

∂(∂µAν)
F ρσ

= 2ε̃αβρση
αγηβε

∂Fγε
∂(∂µAν)

F ρσ

= 2ε̃αβρση
αγηβε

(
δµγ δ

ν
ε − δµε δνγ

)
F ρσ

= 2ε̃αβρσ

(
ηαµηβν − ηανηβµ

)
F ρσ

= 4ε̃αβρση
αµηβνF ρσ, (12)
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where we used the result from the last homework. We thus have

∂µ

(
∂L′

∂(∂µAν)

)
= ∂µ

(
4ε̃αβρση

αµηβνF ρσ
)

= 4ηβν ε̃αβρσ∂
αF ρσ

= −4ηνβ ε̃βαρσ∂αF ρσ

= −4ηνβ ε̃βαρσ (∂α∂ρAσ − ∂α∂σAρ)
= −4ηνβ (ε̃βαρσ∂α∂ρAσ − ε̃βαρσ∂α∂σAρ) . (13)

Since partial derivatives commute (∂α∂ρ = ∂ρ∂α) while ε̃βαρσ = −ε̃βρασ, each term in Eq. (13)
is of the form a symmetric component multiplying an antisymmetric symbol, which always
vanishes:

ε̃βαρσ∂
α∂ρAσ = ε̃βαρσ∂

ρ∂αAσ

= ε̃βρασ∂
α∂ρAσ

= −ε̃βαρσ∂α∂ρAσ, (14)

which implies ε̃βαρσ∂α∂ρAσ = 0. In the second step, we have relabeled the dummy indices
α→ ρ and ρ→ α. We thus indeed get

∂µ

(
∂L′

∂(∂µAν)

)
= 0, (15)

and indeed L′ does not contribute to Maxwell’s equation. Fundamentally, F̃µνFµν cannot
contribute to the equation of motion of the electromagnetic field since it can be written as a
total derivative. Total derivative terms in the Lagrangian never contribute to the equation of
motion since they can be written as surface terms which live at the boundary of spacetime
and thus cannot affect the dynamic inside it. Expanding F̃µνFµν in terms of Aµ

F̃ρσF
ρσ = ε̃µνρσF

µνF ρσ

= ε̃µνρσ ((∂
µAν − ∂νAµ)(∂σAρ − ∂ρAσ))

= ε̃µνρσ ((∂
µAν)(∂σAρ)− (∂µAν)(∂ρAσ)− (∂νAµ)(∂σAρ) + (∂νAµ)(∂ρAσ)) . (16)

Now note that from the chain rule, we have

∂µ(Aν∂ρAσ) = (∂µAν)(∂ρAσ) +Aν(∂µ∂ρAσ), (17)

where the first term on the right-hand side is what appears in Eq. (16). So, for instance, the
first term in Eq. (16) can then be written as

ε̃µνρσ(∂
µAν)(∂σAρ) = ε̃µνρσ∂

µ(Aν∂ρAσ)− ε̃µνρσAν(∂µ∂ρAσ) = ε̃µνρσ∂
µ(Aν∂ρAσ), (18)

since ε̃µνρσAν(∂µ∂ρAσ) = 0. Thus, Eq. (16) can be written as

F̃ρσF
ρσ = ε̃µνρσ (∂

µ(Aν∂σAρ)− ∂µ(Aν∂ρAσ)− ∂ν(Aµ∂σAρ) + ∂ν(Aµ∂ρAσ))

= 4ε̃µνρσ∂
µ(Aν∂σAρ), (19)

where we have used relabeling of the dummy indices to write the last step. Thus, F̃ρσF ρσ is
indeed a total derivative and cannot contribute to the equation of motion.
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Question 2 (4 points).

A quantity that we will need in the near future is the determinant of the metric det(g). In a
4-dimensional spacetime, this determinant can be computed via the relation

ε̃µναβgµγgνδgασgβρ = det (g) ε̃γδσρ, (20)

which is just the standard expression for the determinant of a 4× 4 matrix.

(a) Show that for a diagonal metric, the above expression simply gives that det (g) is just the
product of the diagonal elements of gµν .
Solutions:
(Note that for a metric with Lorentzian signature (that for which the time component is
negative, say), Eq. (20) should have a minus sign in front of det (g). This is because ε̃µναβ ≡
sign(det (g))ε̃µναβ . So, for a Lorentzian metric, if ε̃0123 = 1, then ε̃0123 = −1. In the following,
let’s assume we have a Euclidean metric with sign(det (g)) = +1 since Eq. (20) is valid in this
case.)
Evaluate the right-hand side of Eq. (20) at specific indices, for instance 0123

det (g) ε̃0123 = det (g) = ε̃µναβgµ0gν1gα2gβ3

= ε̃0123g00g11g22g33

= g00g11g22g33. (21)

So, for a diagonal matrix, the determinant is indeed the product of the diagonal elements.

(b) While det (g) is a scalar function, it is not a Lorentz scalar, meaning that it takes different
values in different inertial reference frames. Using the transformation for the Levi-Civita
symbol under a coordinate transform xµ → x′µ

ε̃′αβγδ =

∣∣∣∣∣∂x′∂x

∣∣∣∣∣ ∂xµ∂x′α
∂xν

∂x′β
∂xσ

∂x′γ
∂xρ

∂x′δ
ε̃µνσρ, (22)

show that

det (g′) =

∣∣∣∣∣∂x′∂x

∣∣∣∣∣
−2

det (g), (23)

where
∣∣∣∂x′∂x

∣∣∣ is the determinant of the Jacobian matrix for the coordinate transformation xµ →
x′µ.
Solutions:
Below, we will need the transformation law of the metric under a coordinate transform

g′µγ =
∂xα

∂x′µ
∂xβ

∂x′γ
gαβ (24)

Multiply both sides by ∂x′µ

∂xσ ,

∂x′µ

∂xσ
g′µγ =

∂x′µ

∂xσ
∂xα

∂x′µ
∂xβ

∂x′γ
gαβ

= δασ
∂xβ

∂x′γ
gαβ

=
∂xβ

∂x′γ
gσβ. (25)
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We will use this expression several times below. In the primed frame, we have

det (g′) ε̃′γδσρ = ε̃′µναβg′µγg
′
νδg
′
ασg
′
βρ

=

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣∂x′µ∂xτ1

∂x′ν

∂xτ2
∂x′α

∂xτ3
∂x′β

∂x′τ3
ε̃τ1τ2τ3τ4g′µγg

′
νδg
′
ασg
′
βρ

=

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣ ∂xµ∂x′γ

gτ1µ
∂xν

∂x′δ
gτ2ν

∂xα

∂x′σ
gτ3α

∂xβ

∂x′ρ
gτ4β ε̃

τ1τ2τ3τ4

=

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣ det (g)ε̃µναβ ∂xµ∂x′γ

∂xν

∂x′δ
∂xα

∂x′σ
∂xβ

∂x′ρ

=

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣ det (g)

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣ε̃′γδσρ

=

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣
2

det (g)ε̃′γδσρ. (26)

Thus, for any value of the components of the right and left hand sides

det (g′) =

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣
2

det (g) =

∣∣∣∣∣∂x′∂x

∣∣∣∣∣
−2

det (g), (27)

since the inverse of the determinant is the determinant of the inverse.

(c) Use Eqs. (22) and (23) above to show that

εαβγδ =
√
det (g)ε̃αβγδ (28)

is an actual tensor, unlike ε̃αβγδ.
Solutions:
We need to show that εαβγδ transforms like a tensor. We have

ε′αβγδ =
√

det (g′)ε̃′αβγδ

=

√√√√∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣
2

det (g)

∣∣∣∣∣∂x′∂x

∣∣∣∣∣ ∂xµ∂x′α
∂xν

∂x′β
∂xσ

∂x′γ
∂xρ

∂x′δ
ε̃µνσρ

=
√
det (g)

∣∣∣∣∣ ∂x∂x′
∣∣∣∣∣
∣∣∣∣∣∂x′∂x

∣∣∣∣∣ ∂xµ∂x′α
∂xν

∂x′β
∂xσ

∂x′γ
∂xρ

∂x′δ
ε̃µνσρ

=
∂xµ

∂x′α
∂xν

∂x′β
∂xσ

∂x′γ
∂xρ

∂x′δ

√
det (g)ε̃µνσρ

=
∂xµ

∂x′α
∂xν

∂x′β
∂xσ

∂x′γ
∂xρ

∂x′δ
εµνσρ. (29)

Thus, εαβγδ is indeed a tensor.


