Physics 480/581 General Relativity

Homework Assignment 6
Due date: Wednesday $02 / 28 / 20245 \mathrm{pm}$, submitted electronically on UNM Canvas

Question 1 (4 points).
Moore Problem 8.6

Question 2 (3 points).
Moore Problem 17.5
Note that the metric in the p, q coordinate system is

$$
g_{\mu \nu}^{\prime}=\left(\begin{array}{cc}
1 & 0 \tag{1}\\
0 & (b q)^{-2}
\end{array}\right)
$$

Question 3 (2 points).
Show that if we impose the metric compatibility requirement

$$
\begin{equation*}
\nabla_{\alpha} g_{\mu \nu}=0, \tag{2}
\end{equation*}
$$

then the connection admits the standard Christoffel form

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\rho}=\frac{1}{2} g^{\rho \sigma}\left(\partial_{\mu} g_{\nu \sigma}+\partial_{\nu} g_{\sigma \mu}-\partial_{\sigma} g_{\mu \nu}\right) \tag{3}
\end{equation*}
$$

Question 4 (2 points).
Show that the components of the covariant derivative of a vector A^{ν}

$$
\begin{equation*}
\nabla_{\mu} A^{\nu}=\partial_{\mu} A^{\nu}+\Gamma_{\mu \alpha}^{\nu} A^{\alpha} \tag{4}
\end{equation*}
$$

transform like a tensor under the coordinate transformation $x^{\mu} \rightarrow x^{\mu}$.

