Physics 480/581
General Relativity

Homework Assignment 6 Solutions

Question 1 (4 points).

Moore Problem 8.6
Solutions:

(a) Using Eq. (8.12) in Moore, the t component of the geodesic equation is

d dt 1 dzt dx¥
dr

9it gz ) ~ 309w g =0 )

Now, since the metric is time-independent, the time derivative appearing in the second term
above always vanishes. We are left with

% (—e_m/“jf_> =0= e_x/aj—j_ = constant = c. (2)
We thus obtain ot /
e ce™?. (3)
(b) The condition u - u = —1 can be written as

wow = g 22T (ANE (NS e (AT (AN
= G dr dr it dr Jzz dr ) dr dr)
Using Eq. above, we have

2
(Zf) = —1+e "% ce”)? = —1 + P/, (5)

which thus yield

v _ +v/c2er/a — 1. (6)

dr
(c) Using Egs. and (6], we have

dr _ dvdr i\/CQBx/a—l

- — 7
dt dr dx cet/a ’ (7)

Integrated on both sides, we can write

Cez/a

dr —.
Vc2er/a — 1

1

t==
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This is fairly easy to integrate analytically with the substitution v = ¢2¢*/® — 1. Then

2.7/

dv = dx. 9)

a

Thus,

t:j:% jl}_j: 2y/v+C = 420 \/c2ez/a 1+C, (10)

where C'is a constant of integration. We can fix it using the initial conditions z = z¢ at ¢ = 0,

0= :I: \/ cevo/a —14C = C = $ ¢/ 2ewo/a — (11)

Now from Eq. @ above, we know that

d—x(xo) = £/ cZero/a — 1 = uy. (12)

dr

t(x) = iZ?a (\/ cer/a — 1 — uo) . (13)

We can now invert this (pick the positive root)

t
Lo Rerla —1 —

2a

t
C—Jruo =V c2et/a — 1
a

We thus have

We thus get

[026“’/“ —1+1
=qaln —
c

= aln[e"/%] = zg (16)

(d) For zp =0 at ¢ = 0 (which implies ug = 0), we have

() = aln [(;@)2 4 612] (17)
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The constant ¢ is determined by demanding that z(0) =0

1
aln - =-2alnc=0,=c=1. (18)
c
The resulting trajectory is plotted in Fig.
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Figure 1: The trajectory of a freely-falling particle.
(e) We got back to Eq. (6)) and perform the integral directly
r d
T(x) = j:/ W 9 [tan_l Ve2er/a —1 — tan™! uo} , (19)
zo \/ c2er/a — 1

where we have used Eq. above. For a particle starting at rest at the origin, we have ¢ = 1

and ug = 0, and this simplifies to

7 = 2atan" " Verla — 1.

Let’s invert this to get x(7)

tan (2%) =Vet/a — 1
tan? (é) +1 ="
sec? (%) = ¢?/e
and thus
z(t) =aln [sec2 (2%” = —2aln [cos (

Now, from Eq. , we have

j—i = e%/% = gec? (L),

(20)
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and thus

tr) = /OT sec? (;>de — 2atan (%) (24)

Since both ¢ and x go to infinity as 7/2a goes to 7/2, the proper time as a maximum value of
T = am.

Question 2 (3 points).

Moore Problem 17.5

Note that the metric in the p, ¢ coordinate system is

G =0 a2 ) (25)

Solutions:

()

(b)

The Christoffel symbols are given by

1
o = 59" (Oudho + 0oy — Oo i) (26)

where here p, o, i, v = p or ¢q. Since the only nonvanishing derivative of the metric is 8qg’qq #£0
and the metric is diagonal, the only nonzero Christoffel needs to have ¢ for all its indices

T = §g/qq (Pa94q + 0a9q = Oaq) = §(bQ) O b2 §(bq) g ¢ (27)

All other Christoffels vanish since I'f, = T'ig, Ifp, Thp, Thy = 'y, and T, contain terms of
the form 9,9,,, OpIpg> IpIaq> OpGpp> a0d g9y, which are all zero.
We have the vector field A, which in cartesian coordinates has components
A = Aley,) = Cze,y. (28)
The covariant derivative of A in cartesian coordinates is
V, A = 0,A" + TV A% = 0, A", (29)
since all Christoffels are zero in flat cartesian coordinates. We thus have
V.A* =0, V. AY =C, , Vy A" =0, V,AY = 0. (30)

To find the covariant derivative in the primed frame, we first have to find the components of

A in this frame B
- %A”, (31)

with p =  and ¢ = €. Then,

A/ngz;AfB_f_g‘ZAy:gZAy:OC:c:O. (32)
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(c)

dq dq
= a4 gy =
Oz * oy

We are now ready to compute the covariant derivative of this

9q

A &Z AY = MbCx = gbCp = Chpg. (33)

valq = 8pA,q + FgaA/a = apA,q = Cbg, (34)

where we have used the fact that ', = 0 for all a.
1
VA = 9,4 + FZQA’O‘ = 9,A" + ngA’q = Cbp — —=Cbpq = 0. (35)
q

Of course, VAP = 0 for all a since A’? = 0. It’s not surprising that the covariant derivative
of a vector has different components in different coordinate systems. It is a bona fide (1,1)
tensor that transforms according to the tensor transformation law under a coordinate change,
and their components change in performing that transformation. This is what we will do next.

Let’s define the (1,1) tensor M, " = V, A*. Under a coordinate change, this tensor transforms
as )

- Oz 0z~ 4

Yoo oz oxB T

Let’s compute each of the four components to this tensor:

(36)

ox® Op
rp__ Y VP B
p Op 8x5M0‘
Ox dp Ox Op Oy Op Jy dp
B SV et o Y At Y S R St o VK
opodxr °* opoy * +8p8x 4 opoy Y
= M," + (1)(0)M,Y + (0)(1)M,* + MY
=V A" +V,AY
=0. (37)

ozx® Op
rp_ YY VP B
My = dq 8xf3Ma
Oz Op Ox Op Oy dp Oy Op
— TPy oy CEIP oy CIIP oy CTIP oy
0qox * 0qoy ° +8q8:c 4 +8q8yMy
1 1
= (0)(1)M," + (0)(0)M, Y + E(l)Mym + %(O)Myy
_ 1
=
—0. (38)

v, A"

ox® Jq
rq_ 9T 04 .8
p op 83:5M0‘
Ox Oq Ox Jq 0y dq 0y Oq
=y v Iy w ST
Opox * +8p8y r OpOoxr Y opoy Y
= (D)(0)M, " + (1)bgM, ¥ + (0)(0)M,* + (0)bgM,,*
= bgV AY
= Cbq (39)
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ox® Oq
Ml q — 77M ﬁ
a Oq O0zf ¢
Ox Oq Oz dq Jy Jq Oy dq
=y gy v Iy wy BT
Oqoxr °* 0qoy ° Oqox Y +8q8y 4

1
= (0)(0)M," + (0)bgM,.Y + E(O)My’” + MY

=V,AY
=0. (40)
We indeed retrieve the results from part (b).
Question 3 (2 points).
Show that if we impose the metric compatibility requirement
Vagu =0, (41)
then the connection admits the standard Christoffel form
1
I = igpa (Ougvo + Ovgop — OsGpuw) - (42)
Solutions:
Consider the following three different permutations of the metric compatibility condition
Voguw = apg;w - Fgugou - ngg,uo =0,
vugup = 8,ugup - FZz/gO'p - FZpgua =0,
vugpu = 8ugpu - nggau - Fgugpa =0. (43)
Perform the following operation,
Voguw — Vugup — Vugpu = apguu - a,ugup - azzgpu + 2FZugcrp =0, (44)
where we have used the symmetry of the metric and connection coefficients. We then get
- 1
F,ngap = ) (augup + augpu - 8pg;w) . (45)
Multiplying both sides by g“?, we obtain
ag ag 1
F“l/gapgo,p = Fuyég“ = ng = igap (8lugyp + 8”913# - apg/“/) y (46)

which is the Christoffel connection.
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Another more indirect way to show this is to take the covariant derivative of the metric, and show
that the Christoffel connection leads to the metric compatibility condition:

vaguu = 8ag;w - Fgugm/ - nggua

1 1
= OaY9uv — Yov 5906 (aaguﬁ + augﬁoc - aﬂga,u) — Guo 5906 (aaguﬁ + 81/9504 - aﬁgau)

1 1
= Oa9uv — 555 (aaguﬁ + augﬁa - aﬂgau) - 555 (aagyﬁ + al/gﬁa - aﬁgau)

1 1
= OaGuv — B (8ag;w + 8;191/04 - 8Vgau) -3 (aaguu + al/guoz - augau)

2
1 1 1
= Oa9uv — §<ao<gul/ + aozguu) - §(augya - augou/) + 5((%9% - augua)

=0, (47)

where we used the fact that the metric is always symmetric g, = guu-

Question 4 (2 points).

Show that the components of the covariant derivative of a vector A”
V,AY =0, AY + T, A%, (48)

transform like a tensor under the coordinate transformation x* — z/#.
Solutions:

The key to this is to determine how the Christoffel connection transforms under such a coordi-
nate transformation. Since the connection involves the partial derivative of the metric, let’s first
determine how this transforms.

9 o [0z 9z
wIve = o \ gpw oo 928
B Pz 0P n dx® 0% n ox® 0P OxP 0
) S P Y, P A W W rmip e
where we have used the chain rule in the last term. This last term is what we would expect if

Ou9ve Was a tensor, but since it is not, we also get the two first terms. Combining the three partial
derivatives entering the Christoffel connection,

(49)

o B P 2 o B
0, e + Oy — gl = %%% (Op9ap + 0agsp — pgpa) + ap (Mﬁ,
oz 9228 0%z 9zP oz 9%z 92z 92
Oz Ox/Mdx'e | x'O'T Ox't | Oz’ dx Ot Dx'T D't DV
or®  9%axP
e 8:1:’”8:1:’”)
_ 0x“ ozP oxr x> 928

= a7 Dt o (1o T Oup = 0ape) + 2000 iy g (90)

where we have relabeled o <+ 8 in several terms and used the fact that g,g = gsa to cancel several
terms (in the large bracket, the last term cancels the third term, and the fifth term the second one;
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the two remaining terms are the same after relabeling). The Christoffel connection then transforms

as

I, = %g”" (01900 + 0,95, — OrGyu)
102" 02/ 5. [ 0x® 98 OxP
= 2920 0ac? <8m”’ 0x'7 Oz'k (
10" 82/ 9x® 5, [ Oz OxP
" 2092° 9af 83:’”9 <

102" 92” e <8x OxP

= 2050 0z

10z 5 s [ Oz OxP %z
T2 90 o7 <a w ol (Op9ap + Dagsp — Ipgpa) + 29aﬁa 1y /u)

102" 55 ( 0z OxP R
“3asY (a ot (p8e0 + Doy = Ogpa) + 29aﬁawaw>

0" 0xP 0z s 8:1:’7 5 0?2z
028 Qx'r Oz'v poc T 0xd " z'mdzv
0z 9aP Oz 5 027 0%a”
—Qxd Ox/k 9z PY T Oz QalhdxV

Note that the last term can also be written as

0%z
apgoz,B + 8&96/) - aﬁgpa) + 29045 O

82a

aQa

9V Dk (apgaﬁ + Oagpp — 8,89/)(1) + 2904,8W

Oz dx'tdx Ozt \ dx® dx'v

- 92'hdx> DV

oxr'"  9%x™ 0 (8;10’7 Owa) 0%z Oz

_ 0 (67) - 0%z 9z 9P
Ox'm NV 9xBOxe Oz D¢
922" 9z 9P
 9zPox dzv D

We are now ready to put everything together

/Ay Y Y
v, A =g, A" + TV, A"

5 5t \Opdas + 0agsp = Ipgpa) + QQaBW)

)

ox'r OxP \ Oz°

oxP 9z . . O™ Ozf 02 ax’a 837” 0%z

ozP 0 <8x”’AJ> <8:(:”’ dxP 0xP o 0%z’ Ox° OxP

0x° Ozt Oz’ PP JxrdxT Oz’ Hz'r

axla
AV
) (5)

0x® OxP Oz’

821,/1/

Oz
/pa$/y 81.10'

)

(52)

gT 9T AT
ozt dxo P + Ox° Ox'v Oz’ Oz p’B 63@’“ 0xPOx°

P v v
_ 0000y oy 0T 00 sape gy O 0T 4o

OxP 0z'" oxP 0%z oxP 0%z

_ A £ T7 A7 e
ik 9ge (OpATF )t 50 9207 D' DuPOL”
Oz Oz o

ozt dxo P

and indeed the covariant derivative of a vector transforms like a tensor.

© 92P02° Ox'* D't Ox

ozl 0%z 0%z OxP

g

vy oAV
ozt dxo P Oz og'r VP8 Ox'M DxPOxC O0xPOx° 856’“57A

(53)

A7



