
Physics 480/581
General Relativity

Homework Assignment 6 Solutions

Question 1 (4 points).

Moore Problem 8.6
Solutions:

(a) Using Eq. (8.12) in Moore, the t component of the geodesic equation is

d

dτ

(
gtt
dt

dτ

)
− 1

2
∂tgµν

dxµ

dτ

dxν

dτ
= 0. (1)

Now, since the metric is time-independent, the time derivative appearing in the second term
above always vanishes. We are left with

d

dτ

(
−e−x/a dt

dτ

)
= 0⇒ e−x/a

dt

dτ
= constant = c. (2)

We thus obtain
dt

dτ
= cex/a. (3)

(b) The condition u · u = −1 can be written as

u · u = gµν
dxµ

dτ

dxν

dτ
= gtt

(
dt

dτ

)2

+ gxx

(
dx

dτ

)2

= −e−x/a
(
dt

dτ

)2

+

(
dx

dτ

)2

= −1. (4)

Using Eq. (3) above, we have(
dx

dτ

)2

= −1 + e−x/a(cex/a)2 = −1 + c2ex/a, (5)

which thus yield
dx

dτ
= ±

√
c2ex/a − 1. (6)

(c) Using Eqs. (3) and (6), we have

dx

dt
=
dx

dτ

dτ

dx
= ±

√
c2ex/a − 1

cex/a
, (7)

Integrated on both sides, we can write

t = ±
∫
dx

cex/a√
c2ex/a − 1

. (8)
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This is fairly easy to integrate analytically with the substitution v = c2ex/a − 1. Then

dv =
c2ex/a

a
dx. (9)

Thus,

t = ±a
c

∫
dv√
v

= ±a
c

2
√
v + C = ±2a

c

√
c2ex/a − 1 + C, (10)

where C is a constant of integration. We can fix it using the initial conditions x = x0 at t = 0,

0 = ±2a

c

√
c2ex0/a − 1 + C ⇒ C = ∓2a

c

√
c2ex0/a − 1. (11)

Now from Eq. (6) above, we know that

dx

dτ
(x0) = ±

√
c2ex0/a − 1 = u0. (12)

We thus have
t(x) = ±2a

c

(√
c2ex/a − 1− u0

)
. (13)

We can now invert this (pick the positive root)

ct

2a
=
√
c2ex/a − 1− u0

ct

2a
+ u0 =

√
c2ex/a − 1(

ct

2a
+ u0

)2

= c2ex/a − 1

1

c2

(
ct

2a
+ u0

)2

+
1

c2
= ex/a

ln

[(
t

2a
+
u0
c

)2

+
1

c2

]
=
x

a
(14)

We thus get

x(t) = a ln

[(
t

2a
+
u0
c

)2

+
1

c2

]
. (15)

x(0) = a ln

[(u0
c

)2
+

1

c2

]
= a ln

[
c2ex0/a − 1 + 1

c2

]
= a ln [ex0/a] = x0 (16)

(d) For x0 = 0 at t = 0 (which implies u0 = 0), we have

x(t) = a ln

[(
t

2a

)2

+
1

c2

]
. (17)
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The constant c is determined by demanding that x(0) = 0

a ln
1

c2
= −2a ln c = 0, ⇒ c = 1. (18)

The resulting trajectory is plotted in Fig. 1.
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Figure 1: The trajectory of a freely-falling particle.

(e) We got back to Eq. (6) and perform the integral directly

τ(x) = ±
∫ x

x0

dx√
c2ex/a − 1

= 2a
[
tan−1

√
c2ex/a − 1− tan−1 u0

]
, (19)

where we have used Eq. (12) above. For a particle starting at rest at the origin, we have c = 1
and u0 = 0, and this simplifies to

τ = 2a tan−1
√
ex/a − 1. (20)

Let’s invert this to get x(τ)

tan
( τ

2a

)
=
√
ex/a − 1

tan2
( τ

2a

)
+ 1 = ex/a

sec2
( τ

2a

)
= ex/a (21)

and thus
x(τ) = a ln

[
sec2

( τ
2a

)]
= −2a ln [cos

( τ
2a

)
]. (22)

Now, from Eq. (3), we have
dt

dτ
= ex/a = sec2

( τ
2a

)
, (23)
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and thus
t(τ) =

∫ τ

0
sec2

(
τ ′

2a

)
dτ ′ = 2a tan

( τ
2a

)
. (24)

Since both t and x go to infinity as τ/2a goes to π/2, the proper time as a maximum value of
τ = aπ.

Question 2 (3 points).

Moore Problem 17.5

Note that the metric in the p, q coordinate system is

g′µν =

(
1 0
0 (bq)−2

)
. (25)

Solutions:

(a) The Christoffel symbols are given by

Γρµν =
1

2
g′ρσ

(
∂µg

′
νσ + ∂νg

′
σµ − ∂σg′µν

)
, (26)

where here ρ, σ, µ, ν = p or q. Since the only nonvanishing derivative of the metric is ∂qg′qq 6= 0
and the metric is diagonal, the only nonzero Christoffel needs to have q for all its indices

Γqqq =
1

2
g′qq

(
∂qg
′
qq + ∂qg

′
qq − ∂qg′qq

)
=

1

2
(bq)2∂q

1

(bq)2
=

1

2
(bq)2

−2

b2q3
= −1

q
. (27)

All other Christoffels vanish since Γqqp = Γqpq, Γqpp, Γppp, Γppq = Γpqp, and Γpqq contain terms of
the form ∂qg

′
pq, ∂pg′pq, ∂pg′qq, ∂pg′pp, and ∂qg′pp, which are all zero.

(b) We have the vector field A, which in cartesian coordinates has components

A = Aµe(µ) = Cx ey. (28)

The covariant derivative of A in cartesian coordinates is

∇νAµ = ∂νA
µ + ΓµναA

α = ∂νA
µ, (29)

since all Christoffels are zero in flat cartesian coordinates. We thus have

∇xAx = 0, ∇xAy = C, ,∇yAx = 0, ∇yAy = 0. (30)

To find the covariant derivative in the primed frame, we first have to find the components of
A in this frame

A′µ =
∂x′µ

∂xν
Aν , (31)

with p = x and q = eby. Then,

A′p =
∂p

∂x
Ax +

∂p

∂y
Ay =

∂p

∂y
Ay = 0Cx = 0. (32)
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A′q =
∂q

∂x
Ax +

∂q

∂y
Ay =

∂q

∂y
Ay = ebybCx = qbCp = Cbpq. (33)

We are now ready to compute the covariant derivative of this

∇pA′q = ∂pA
′q + ΓqpαA

′α = ∂pA
′q = Cbq, (34)

where we have used the fact that Γqpα = 0 for all α.

∇qA′q = ∂qA
′q + ΓqqαA

′α = ∂qA
′q + ΓqqqA

′q = Cbp− 1

q
Cbpq = 0. (35)

Of course, ∇αA′p = 0 for all α since A′p = 0. It’s not surprising that the covariant derivative
of a vector has different components in different coordinate systems. It is a bona fide (1, 1)
tensor that transforms according to the tensor transformation law under a coordinate change,
and their components change in performing that transformation. This is what we will do next.

(c) Let’s define the (1, 1) tensorM µ
ν ≡ ∇νAµ. Under a coordinate change, this tensor transforms

as
M ′

µ
ν =

∂xα

∂x′ν
∂x′µ

∂xβ
M β
α . (36)

Let’s compute each of the four components to this tensor:

M ′
p
p =

∂xα

∂p

∂p

∂xβ
M β
α

=
∂x

∂p

∂p

∂x
M x
x +

∂x

∂p

∂p

∂y
M y
x +

∂y

∂p

∂p

∂x
M x
y +

∂y

∂p

∂p

∂y
M y
y

= M x
x + (1)(0)M y

x + (0)(1)M x
y +M y

y

= ∇xAx +∇yAy

= 0. (37)

M ′
p
q =

∂xα

∂q

∂p

∂xβ
M β
α

=
∂x

∂q

∂p

∂x
M x
x +

∂x

∂q

∂p

∂y
M y
x +

∂y

∂q

∂p

∂x
M x
y +

∂y

∂q

∂p

∂y
M y
y

= (0)(1)M x
x + (0)(0)M y

x +
1

bq
(1)M x

y +
1

bq
(0)M y

y

=
1

bq
∇yAx

= 0. (38)

M ′
q
p =

∂xα

∂p

∂q

∂xβ
M β
α

=
∂x

∂p

∂q

∂x
M x
x +

∂x

∂p

∂q

∂y
M y
x +

∂y

∂p

∂q

∂x
M x
y +

∂y

∂p

∂q

∂y
M y
y

= (1)(0)M x
x + (1)bqM y

x + (0)(0)M x
y + (0)bqM y

y

= bq∇xAy

= Cbq (39)
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M ′
q
q =

∂xα

∂q

∂q

∂xβ
M β
α

=
∂x

∂q

∂q

∂x
M x
x +

∂x

∂q

∂q

∂y
M y
x +

∂y

∂q

∂q

∂x
M x
y +

∂y

∂q

∂q

∂y
M y
y

= (0)(0)M x
x + (0)bqM y

x +
1

bq
(0)M x

y +M y
y

= ∇yAy

= 0. (40)

We indeed retrieve the results from part (b).

Question 3 (2 points).

Show that if we impose the metric compatibility requirement

∇αgµν = 0, (41)

then the connection admits the standard Christoffel form

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgσµ − ∂σgµν) . (42)

Solutions:
Consider the following three different permutations of the metric compatibility condition

∇ρgµν = ∂ρgµν − Γσρµgσν − Γσρνgµσ = 0,

∇µgνρ = ∂µgνρ − Γσµνgσρ − Γσµρgνσ = 0,

∇νgρµ = ∂νgρµ − Γσνρgσµ − Γσνµgρσ = 0. (43)

Perform the following operation,

∇ρgµν −∇µgνρ −∇νgρµ = ∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γσµνgσρ = 0, (44)

where we have used the symmetry of the metric and connection coefficients. We then get

Γσµνgσρ =
1

2
(∂µgνρ + ∂νgρµ − ∂ρgµν) . (45)

Multiplying both sides by gαρ, we obtain

Γσµνg
αρgσρ = Γσµνδ

α
σ = Γαµν =

1

2
gαρ (∂µgνρ + ∂νgρµ − ∂ρgµν) , (46)

which is the Christoffel connection.
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Another more indirect way to show this is to take the covariant derivative of the metric, and show
that the Christoffel connection leads to the metric compatibility condition:

∇αgµν = ∂αgµν − Γσαµgσν − Γσανgµσ

= ∂αgµν − gσν
1

2
gσβ (∂αgµβ + ∂µgβα − ∂βgαµ)− gµσ

1

2
gσβ (∂αgνβ + ∂νgβα − ∂βgαν)

= ∂αgµν −
1

2
δβν (∂αgµβ + ∂µgβα − ∂βgαµ)− 1

2
δβµ (∂αgνβ + ∂νgβα − ∂βgαν)

= ∂αgµν −
1

2
(∂αgµν + ∂µgνα − ∂νgαµ)− 1

2
(∂αgνµ + ∂νgµα − ∂µgαν)

= ∂αgµν −
1

2
(∂αgµν + ∂αgνµ)− 1

2
(∂µgνα − ∂µgαν) +

1

2
(∂νgαµ − ∂νgµα)

= 0, (47)

where we used the fact that the metric is always symmetric gµν = gνµ.

Question 4 (2 points).

Show that the components of the covariant derivative of a vector Aν

∇µAν = ∂µA
ν + ΓνµαA

α, (48)

transform like a tensor under the coordinate transformation xµ → x′µ.
Solutions:

The key to this is to determine how the Christoffel connection transforms under such a coordi-
nate transformation. Since the connection involves the partial derivative of the metric, let’s first
determine how this transforms.

∂′µg
′
νσ =

∂

∂x′µ

(
∂xα

∂x′ν
∂xβ

∂x′σ
gαβ

)
=

∂2xα

∂x′µ∂x′ν
∂xβ

∂x′σ
gαβ +

∂xα

∂x′ν
∂2xβ

∂x′µ∂x′σ
gαβ +

∂xα

∂x′ν
∂xβ

∂x′σ
∂xρ

∂x′µ
∂

∂xρ
gαβ, (49)

where we have used the chain rule in the last term. This last term is what we would expect if
∂µgνσ was a tensor, but since it is not, we also get the two first terms. Combining the three partial
derivatives entering the Christoffel connection,

∂′µg
′
νσ + ∂′νg

′
σµ − ∂′σg′µν =

∂xα

∂x′ν
∂xβ

∂x′σ
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + gαβ

(
∂2xα

∂x′µ∂x′ν
∂xβ

∂x′σ

+
∂xα

∂x′ν
∂2xβ

∂x′µ∂x′σ
+

∂2xα

∂x′ν∂x′σ
∂xβ

∂x′µ
+
∂xα

∂x′σ
∂2xβ

∂x′ν∂x′µ
− ∂2xα

∂x′σ∂x′µ
∂xβ

∂x′ν

− ∂xα

∂x′µ
∂2xβ

∂x′σ∂x′ν

)
=
∂xα

∂x′ν
∂xβ

∂x′σ
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + 2gαβ

∂2xα

∂x′µ∂x′ν
∂xβ

∂x′σ
, (50)

where we have relabeled α↔ β in several terms and used the fact that gαβ = gβα to cancel several
terms (in the large bracket, the last term cancels the third term, and the fifth term the second one;
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the two remaining terms are the same after relabeling). The Christoffel connection then transforms
as

Γγ
′
µν =

1

2
g′γσ

(
∂′µg

′
νσ + ∂′νg

′
σµ − ∂′σg′µν

)
=

1

2

∂x′γ

∂xδ
∂x′σ

∂xε
gδε
(
∂xα

∂x′ν
∂xβ

∂x′σ
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + 2gαβ

∂2xα

∂x′µ∂x′ν
∂xβ

∂x′σ

)
=

1

2

∂x′γ

∂xδ
∂x′σ

∂xε
∂xβ

∂x′σ
gδε
(
∂xα

∂x′ν
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + 2gαβ

∂2xα

∂x′µ∂x′ν

)
=

1

2

∂x′γ

∂xδ
∂xβ

∂xε
gδε
(
∂xα

∂x′ν
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + 2gαβ

∂2xα

∂x′µ∂x′ν

)
=

1

2

∂x′γ

∂xδ
δβε g

δε

(
∂xα

∂x′ν
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + 2gαβ

∂2xα

∂x′µ∂x′ν

)
=

1

2

∂x′γ

∂xδ
gδβ
(
∂xα

∂x′ν
∂xρ

∂x′µ
(∂ρgαβ + ∂αgβρ − ∂βgρα) + 2gαβ

∂2xα

∂x′µ∂x′ν

)
=
∂x′γ

∂xδ
∂xρ

∂x′µ
∂xα

∂x′ν
Γδρα +

∂x′γ

∂xδ
δδα

∂2xα

∂x′µ∂x′ν

=
∂x′γ

∂xδ
∂xρ

∂x′µ
∂xα

∂x′ν
Γδρα +

∂x′γ

∂xα
∂2xα

∂x′µ∂x′ν

(51)

Note that the last term can also be written as

∂x′γ

∂xα
∂2xα

∂x′µ∂x′ν
=

∂

∂x′µ

(
∂x′γ

∂xα
∂xα

∂x′ν

)
− ∂2x′γ

∂x′µ∂xα
∂xα

∂x′ν

= .
∂

∂x′µ
(δγν )− ∂2x′γ

∂xβ∂xα
∂xα

∂x′ν
∂xβ

∂x′µ

= − ∂2x′γ

∂xβ∂xα
∂xα

∂x′ν
∂xβ

∂x′µ
. (52)

We are now ready to put everything together

∇′µA′ν = ∂′µA
′ν + Γν

′
µαA

′α

=
∂xρ

∂x′µ
∂

∂xρ

(
∂x′ν

∂xσ
Aσ
)

+

(
∂x′ν

∂xσ
∂xρ

∂x′µ
∂xβ

∂x′α
Γσρβ −

∂2x′ν

∂xρ∂xσ
∂xσ

∂x′α
∂xρ

∂x′µ

)(
∂x′α

∂xγ
Aγ
)

=
∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρA

σ +
∂x′ν

∂xσ
∂xρ

∂x′µ
∂xβ

∂x′α
∂x′α

∂xγ
ΓσρβA

γ +
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
Aσ − ∂2x′ν

∂xρ∂xσ
∂xσ

∂x′α
∂xρ

∂x′µ
∂x′α

∂xγ
Aγ

=
∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρA

σ +
∂x′ν

∂xσ
∂xρ

∂x′µ
δβγΓσρβA

γ +
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
Aσ − ∂2x′ν

∂xρ∂xσ
∂xρ

∂x′µ
δσγA

γ

=
∂xρ

∂x′µ
∂x′ν

∂xσ
(
∂ρA

σ + ΓσργA
γ
)

+
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
Aσ − ∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
Aσ

=
∂xρ

∂x′µ
∂x′ν

∂xσ
∇ρAσ, (53)

and indeed the covariant derivative of a vector transforms like a tensor.


