Physics 480/581
 General Relativity

Homework Assignment 8 Solutions

Question 1 (5 points).
The Einstein-Hilbert action in n spacetime dimensions is given by

$$
\begin{equation*}
S_{\mathrm{H}}=\int d^{n} x \sqrt{-g} R=\int d^{n} x \sqrt{-g} g^{\mu \nu} R_{\mu \nu} \tag{1}
\end{equation*}
$$

where R is the Ricci scalar and g is the determinant of the metric. By varying this action with respect to the inverse metric $g^{\mu \nu}$ and setting $\delta S_{\mathrm{H}}=0$, one can derive Einstein's equation. This variation leads to 3 terms

$$
\begin{equation*}
\delta S_{\mathrm{H}}=\int d^{n} x \sqrt{-g} g^{\mu \nu} \delta R_{\mu \nu}+\int d^{n} x \sqrt{-g} R_{\mu \nu} \delta g^{\mu \nu}+\int d^{n} x R \delta \sqrt{-g} . \tag{2}
\end{equation*}
$$

The first term is actually a total derivative (can you show that?) and thus does not contribute to the equation of motion. The second term is already of the form we want (i.e. a variation with respect to the inverse metric). The third term is what we need to focus on.
(a) Using the definition of the inverse metric $g^{\mu \nu}$, show that the variation of the metric and of the inverse metric are related as follows

$$
\begin{equation*}
\delta g_{\mu \nu}=-g_{\mu \rho} g_{\nu \sigma} \delta g^{\rho \sigma} . \tag{3}
\end{equation*}
$$

Solutions:

Taking the definition of the inverse metric $g^{\rho \sigma} g_{\sigma \nu}=\delta_{\nu}^{\rho}$ and performing a variation on both sides we get

$$
\begin{equation*}
\delta g^{\rho \sigma} g_{\sigma \nu}+g^{\rho \sigma} \delta g_{\sigma \nu}=0 \tag{4}
\end{equation*}
$$

Multiplying this by $g_{\mu \rho}$, we obtain

$$
\begin{align*}
g_{\mu \rho} g^{\rho \sigma} \delta g_{\sigma \nu} & =-g_{\mu \rho} g_{\sigma \nu} \delta g^{\rho \sigma} \\
\delta_{\mu}^{\sigma} \delta g_{\sigma \nu} & =-g_{\mu \rho} g_{\sigma \nu} \delta g^{\rho \sigma}, \tag{5}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\delta g_{\mu \nu}=-g_{\mu \rho} g_{\nu \sigma} \delta g^{\rho \sigma} . \tag{6}
\end{equation*}
$$

(b) Use the identity $\ln (\operatorname{det} M)=\operatorname{Tr}(\ln M)$ (where M is a square non-singular matrix) and the result from part (a) to show that

$$
\begin{equation*}
\delta \sqrt{-g}=-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu} \tag{7}
\end{equation*}
$$

Solutions:

Using standard derivative rules, we have

$$
\begin{equation*}
\delta(\sqrt{-g})=-\frac{1}{2 \sqrt{-g}} \delta g \tag{8}
\end{equation*}
$$

so the problem boils down to finding the variation of the metric determinant δg. This is where the provided identity $\ln (\operatorname{det} M)=\operatorname{Tr}(\ln M)$ becomes useful. Taking the variation on both sides, we get

$$
\begin{equation*}
\frac{1}{\operatorname{det} M} \delta(\operatorname{det} M)=\operatorname{Tr}\left(M^{-1} \delta M\right) \tag{9}
\end{equation*}
$$

Now, identifying M with the matrix form of the $g_{\mu \nu}$ metric, this implies that

$$
\begin{equation*}
\frac{1}{g} \delta g=g^{\mu \nu} \delta g_{\mu \nu} \tag{10}
\end{equation*}
$$

Using Eqs. (10) and (3), we thus get

$$
\begin{align*}
\delta(\sqrt{-g}) & =-\frac{1}{2 \sqrt{-g}} g g^{\mu \nu}\left(-g_{\alpha \mu} g_{\beta \nu} \delta g^{\alpha \beta}\right) \\
& =-\frac{1}{2} \sqrt{-g} \delta_{\alpha}^{\nu} g_{\beta \nu} \delta g^{\alpha \beta} \\
& =-\frac{1}{2} \sqrt{-g} g_{\beta \alpha} \delta g^{\alpha \beta} \\
& =-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}, \tag{11}
\end{align*}
$$

where we have relabeled dummy indices in the last step.
(c) Use the above results and set $\delta S_{\mathrm{H}}=0$ to derive Einstein's equation in vacuum

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=0 . \tag{12}
\end{equation*}
$$

Solutions:

Setting he variation of the Einstein-Hilbert action to zero, we obtain

$$
\begin{align*}
\delta S_{\mathrm{H}} & =\int d^{n} x\left[\sqrt{-g} R_{\mu \nu} \delta g^{\mu \nu}+R \delta \sqrt{-g}\right] \\
& =\int d^{n} x \sqrt{-g}\left[R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R\right] \delta g^{\mu \nu} \\
& =0, \tag{13}
\end{align*}
$$

which immediately implies that

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=0 \tag{14}
\end{equation*}
$$

in vacuum.

Question 2 (4 points).
The Lagrangian density for electromagnetism in curved spacetime is

$$
\begin{equation*}
\mathcal{L}=\sqrt{-g}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+A_{\mu} J^{\mu}\right) \tag{15}
\end{equation*}
$$

where J^{μ} is the electric four-current and g is the determinant of the metric. Using the definition of the stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}=-2 \frac{1}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}}, \tag{16}
\end{equation*}
$$

where $S=\int d^{4} x \mathcal{L}$ is the action, compute the stress energy tensor for electromagnetism. You may find some of the results from Question 1 useful.

Solutions:

Here we are interested in the variation of the action S with respect to the inverse metric $g^{\mu \nu}$. So, we can think of $S\left[g^{\mu \nu}\right]$ as a functional (i.e. a function of a function) and we are interested in computing the functional derivative $\delta S / \delta g^{\mu \nu}$. In computing this derivative, we assume that $F_{\mu \nu}, A_{\mu}$ and J^{μ} are constant. First, note that the Lagrangian density depends on the inverse metric in this way

$$
\begin{equation*}
\mathcal{L}=\sqrt{-g}\left(-\frac{1}{4} g^{\mu \alpha} g^{\nu \beta} F_{\alpha \beta} F_{\mu \nu}+A_{\mu} J^{\mu}\right), \tag{17}
\end{equation*}
$$

where the last term is independent of the inverse metric since it is the contraction of a fundamental one-form gauge field A_{μ} and with the current vector (i.e. not a one-form) J^{μ}.

The variation of S with respect to $g^{\mu \nu}$ is then

$$
\begin{align*}
\delta S & =\int d^{4} x\left[\delta(\sqrt{-g})\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+A_{\mu} J^{\mu}\right)+\sqrt{-g}\left(-\frac{1}{4}\left(\delta g^{\mu \alpha} g^{\nu \beta}+g^{\mu \alpha} \delta g^{\nu \beta}\right) F_{\alpha \beta} F_{\mu \nu}\right)\right] \\
& =\int d^{4} x\left[\delta(\sqrt{-g})\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+A_{\mu} J^{\mu}\right)+\sqrt{-g} \delta g^{\mu \nu}\left(-\frac{1}{4}\left(g^{\gamma \beta} F_{\nu \beta} F_{\mu \gamma}+g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu}\right)\right)\right] \\
& =\int d^{4} x\left[\delta(\sqrt{-g})\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+A_{\mu} J^{\mu}\right)+\sqrt{-g} \delta g^{\mu \nu}\left(-\frac{1}{2}\left(g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu}\right)\right)\right], \tag{18}
\end{align*}
$$

where we have relabeled some dummy indices. Now using Eq. (7), we get

$$
\begin{equation*}
\delta S=\int d^{4} x \sqrt{-g} \delta g^{\mu \nu}\left[-\frac{1}{2} g_{\mu \nu}\left(-\frac{1}{4} F^{\alpha \beta} F_{\alpha \beta}+A_{\alpha} J^{\alpha}\right)+\left(-\frac{1}{2} g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu}\right)\right] \tag{19}
\end{equation*}
$$

We thus get

$$
\begin{equation*}
\frac{\delta S}{\delta g^{\mu \nu}}=\sqrt{-g}\left[-\frac{1}{2} g_{\mu \nu}\left(-\frac{1}{4} F^{\alpha \beta} F_{\alpha \beta}+A_{\alpha} J^{\alpha}\right)+\left(-\frac{1}{2} g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu}\right)\right] \tag{20}
\end{equation*}
$$

using the rule of functional differentiation. The stress-energy tensor is then

$$
\begin{align*}
T_{\mu \nu} & =-2 \frac{1}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}} \\
& =-2\left[-\frac{1}{2} g_{\mu \nu}\left(-\frac{1}{4} F^{\alpha \beta} F_{\alpha \beta}+A_{\alpha} J^{\alpha}\right)+\left(-\frac{1}{2} g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu}\right)\right] \\
& =g_{\mu \nu}\left(-\frac{1}{4} F^{\alpha \beta} F_{\alpha \beta}+A_{\alpha} J^{\alpha}\right)+g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu} \\
& =-\frac{1}{4} g_{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}+g^{\alpha \gamma} F_{\mu \alpha} F_{\nu \gamma}+g_{\mu \nu} A_{\alpha} J^{\alpha} . \tag{21}
\end{align*}
$$

where we have used the antisymmetry of the $F_{\mu \nu}$ and the symmetry of the metric to write $g^{\gamma \alpha} F_{\alpha \mu} F_{\gamma \nu}=$ $g^{\alpha \gamma} F_{\mu \alpha} F_{\nu \gamma}$. Note that the last term involving the electric current is often not included in the electromagnetic stress-energy tensor since it describes the contribution of charged particles (typically included in the matter stress-energy tensor) rather than that of electromagnetic field.

Question 3 (4 points).
Moore Problem 20.10

Solutions:

(a) This problem introduces you to the concept of local orthonormal frame (LOF). We shall denote the basis vector in the LOF as $\hat{\mathbf{e}}_{(a)}$, where we shall use latin indices to denote components of tensors in the LOF. Our standard coordinate basis vectors $\hat{\mathbf{e}}_{(\mu)}$ can be written in terms of the LOF basis vectors as

$$
\begin{equation*}
\hat{\mathbf{e}}_{(\mu)}=e_{\mu}{ }^{a} \hat{\mathbf{e}}_{(a)} \tag{22}
\end{equation*}
$$

where the component of $\hat{\mathbf{e}}_{(\mu)}$ in the direction of LOF basis vector $\hat{\mathbf{e}}_{(a)}$, denoted $e_{\mu}{ }^{a}$ is referred as the "vielbein" or "tetrad". The key properties of the vielbeins is that they are orthonormal with respect to the standard coordinate basis metric

$$
\begin{equation*}
g_{\mu \nu} e^{\mu}{ }_{a} e^{\nu}{ }_{b}=\eta_{a b}, \tag{23}
\end{equation*}
$$

where $e^{\mu}{ }_{a}$ are the inverse vielbeins, defined via $e^{\mu}{ }_{a} e_{\nu}{ }^{a}=\delta_{\nu}^{\mu}$ and $e_{\mu}{ }^{a} e^{\mu}{ }_{b}=\delta_{b}^{a}$. Note that Moore denotes the inverse vielbeins as $e^{\mu}{ }_{a}=\left(\boldsymbol{o}_{a}\right)^{\mu}$. Using Eq. (23), we can derive an alternative relation between the vielbein and its inverse

$$
\begin{equation*}
e_{\mu}{ }^{a}=g_{\mu \nu} \eta^{a b} e^{\nu}{ }_{b} \tag{24}
\end{equation*}
$$

Now, if you know the components V^{μ} of some vector \mathbf{V} in our standard coordinate basis, the components of \mathbf{V} in the LOF basis are simply

$$
\begin{equation*}
V^{a}=e_{\mu}{ }^{a} V^{\mu} . \tag{25}
\end{equation*}
$$

Similarly, if you know the stress-energy tensor components in a coordinate basis, its components in the LOF basis will simply be

$$
\begin{equation*}
T^{a b}=e_{\mu}{ }^{a} e_{\nu}{ }^{b} T^{\mu \nu} \tag{26}
\end{equation*}
$$

where $T^{a b}$ here is what Moore calls $T_{\mathrm{obs}}^{a b}$. Note that substituting Eq. (24) into Eq. (26) yield Eq. (20.34) in Moore. Now the dominant energy condition (DEC) implies that the vector \boldsymbol{b} is causal if the vector \boldsymbol{a} is also causal, where the components of \boldsymbol{b} are

$$
\begin{equation*}
b^{\beta}=-T^{\beta \nu} g_{\nu \alpha} a^{\alpha}=-T^{\beta \nu} a_{\nu} . \tag{27}
\end{equation*}
$$

We want to show that a fluid's four-momentum's density $\pi^{a} \equiv T^{t a}$ is causal in a LOF, where the latin indices on π and T indicate that these are evaluated in the LOF.

$$
\begin{equation*}
\pi^{a}=T^{t a}=e_{\mu}{ }^{t} e_{\nu}^{a} T^{\mu \nu} \tag{28}
\end{equation*}
$$

Now, in the coordinate basis, $e_{\mu}{ }^{t}$ is timelike since

$$
\begin{equation*}
g^{\mu \nu} e_{\mu}{ }^{t} e_{\nu}{ }^{t}=\eta^{t t}=-1 . \tag{29}
\end{equation*}
$$

The four-velocity of an observer at rest in a LOF is $u_{\mathrm{obs}}^{a}=(1,0,0,0)$. But the observer's four-velocity in the coordinate basis will also be $u^{\mu}=(1,0,0,0)$, since she's at rest. Since

$$
\begin{align*}
u_{\mathrm{obs}}^{t} & =e_{\mu}^{t} u^{\mu} \\
1 & =e_{t}^{t}>0, \tag{30}
\end{align*}
$$

and $e_{\mu}{ }^{t}$ is thus a causal vector in the coordinate basis. If the DEC is true, then this means that $b^{\nu}=-T^{\nu \mu} e_{\mu}{ }^{t}$ is also causal, as per Eq. 27). We this get

$$
\begin{equation*}
\pi^{a}=-e_{\nu}^{a} b^{\nu}=-b^{a} . \tag{31}
\end{equation*}
$$

Since \boldsymbol{b} is causal, we indeed get that $\boldsymbol{\pi}$ is causal.
(b) Let's assume the stress-energy tensor of a perfect fluid which is at rest (by definition) in its LOF, and his given by $T^{a b}=\left(\rho_{0}+p_{0}\right) u^{a} u^{b}+p_{0} \eta^{a b}$. Let's compute the time and spatial components of the DEC (Eq. 27))

$$
\begin{gather*}
b^{t}=-T^{t b} \eta_{b c} a^{c}=-T^{t t} \eta_{t t} a^{t}=\rho_{0} a^{t} \tag{32}\\
b^{i}=-T^{i b} \eta_{b c} a^{c}=-T^{i i} \eta_{i i} a^{i}=-p_{0} a^{i}, \tag{33}
\end{gather*}
$$

where $i=x, y, z$. Now \boldsymbol{a} is a causal vector, which means that

$$
\begin{equation*}
a^{a} a_{a}=\eta_{a b} a^{a} a^{b}=-\left(a^{t}\right)^{2}+\left(a^{x}\right)^{2}+\left(a^{y}\right)^{2}+\left(a^{z}\right)^{2} \leq 0, \tag{34}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left(a^{t}\right)^{2} \geq\left(a^{x}\right)^{2}+\left(a^{y}\right)^{2}+\left(a^{z}\right)^{2} . \tag{35}
\end{equation*}
$$

Also $a^{t}>0$. By the DEC, \boldsymbol{b} is also causal, which means that $b^{t}>0$ and

$$
\begin{equation*}
b_{a} b^{a}=\eta_{a b} b^{a} b^{b}=-\left(b^{t}\right)^{2}+\left(b^{x}\right)^{2}+\left(b^{y}\right)^{2}+\left(b^{z}\right)^{2}=-\left(\rho_{0} a^{t}\right)^{2}+p_{0}^{2}\left(\left(a^{x}\right)^{2}+\left(a^{y}\right)^{2}+\left(a^{z}\right)^{2}\right) \leq 0 . \tag{36}
\end{equation*}
$$

The worse possible case for this equation is when we saturate Eq. (35) (that is, we take the equality). We then get

$$
\begin{equation*}
\eta_{a b} b^{a} b^{b}=-\left(\rho_{0} a^{t}\right)^{2}+p_{0}^{2}\left(a^{t}\right)^{2}=\left(-\rho_{0}^{2}+p_{0}^{2}\right)\left(a^{t}\right)^{2} \leq 0 \tag{37}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\rho_{0}^{2} \geq p_{0}^{2} \tag{38}
\end{equation*}
$$

since $\left(a^{t}\right)^{2}>0$. Now using Eq. (32), we have $\rho_{0}>0$ since both $a^{t}>0$ and $b^{t}>0$ (by the DEC). We thus get

$$
\begin{equation*}
\rho_{0} \geq\left|p_{0}\right| . \tag{39}
\end{equation*}
$$

(c) We have

$$
\begin{equation*}
b^{\mu}=-T^{\mu \nu} g_{\nu \alpha} a^{\alpha}=\Lambda g^{\mu \nu} g_{\nu \alpha} a^{\alpha}=\Lambda \delta_{\alpha}^{\mu} a^{\alpha}=\Lambda a^{\mu} \tag{40}
\end{equation*}
$$

which automatically implies that if \boldsymbol{a} is causal, then \boldsymbol{b} is causal. To see this, note that Λ is positive, which means that $b^{t}>0$ if $a^{t}>0$ and $b_{\mu} b^{\mu}=\Lambda^{2} a_{\mu} a^{\mu} \leq 0$ if \boldsymbol{a} is causal. Thus, a stress-energy tensor of the form $\Lambda g^{\mu \nu}$ satisfies the DEC.
(d) In part (a), we use the DEC to show that $\pi^{a}=T^{t a}$ is causal. This means that $\pi^{t}>0$. Now, $\pi^{t}=T^{t t}=\rho_{0}$, which means that $\rho_{0}>0$. Since this latter statement is the Weak Energy condition (WEC), we just showed that the DEC implies the WEC.

