
Physics 480/581
General Relativity

Homework Assignment 8 Solutions

Question 1 (5 points).

The Einstein-Hilbert action in n spacetime dimensions is given by

SH =

∫
dnx
√
−g R =

∫
dnx
√
−g gµνRµν , (1)

where R is the Ricci scalar and g is the determinant of the metric. By varying this action with
respect to the inverse metric gµν and setting δSH = 0, one can derive Einstein’s equation. This
variation leads to 3 terms

δSH =

∫
dnx
√
−g gµνδRµν +

∫
dnx
√
−g Rµν δgµν +

∫
dnxR δ

√
−g. (2)

The first term is actually a total derivative (can you show that?) and thus does not contribute
to the equation of motion. The second term is already of the form we want (i.e. a variation with
respect to the inverse metric). The third term is what we need to focus on.

(a) Using the definition of the inverse metric gµν , show that the variation of the metric and of
the inverse metric are related as follows

δgµν = −gµρgνσδgρσ. (3)

Solutions:
Taking the definition of the inverse metric gρσgσν = δρν and performing a variation on both
sides we get

δgρσgσν + gρσδgσν = 0. (4)

Multiplying this by gµρ, we obtain

gµρg
ρσδgσν = −gµρgσνδgρσ

δσµδgσν = −gµρgσνδgρσ, (5)

which implies that
δgµν = −gµρgνσδgρσ. (6)

(b) Use the identity ln (detM) = Tr(lnM) (where M is a square non-singular matrix) and the
result from part (a) to show that

δ
√
−g = −1

2

√
−g gµνδgµν . (7)

Solutions:
Using standard derivative rules, we have

δ(
√
−g) = − 1

2
√
−g

δg, (8)
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so the problem boils down to finding the variation of the metric determinant δg. This is where
the provided identity ln (detM) = Tr(lnM) becomes useful. Taking the variation on both
sides, we get

1

detM
δ(detM) = Tr(M−1δM). (9)

Now, identifying M with the matrix form of the gµν metric, this implies that

1

g
δg = gµνδgµν . (10)

Using Eqs. (10) and (3), we thus get

δ(
√
−g) = − 1

2
√
−g

ggµν(−gαµgβνδgαβ)

= −1

2

√
−gδναgβνδgαβ

= −1

2

√
−ggβαδgαβ

= −1

2

√
−g gµνδgµν , (11)

where we have relabeled dummy indices in the last step.

(c) Use the above results and set δSH = 0 to derive Einstein’s equation in vacuum

Rµν −
1

2
Rgµν = 0. (12)

Solutions:
Setting he variation of the Einstein-Hilbert action to zero, we obtain

δSH =

∫
dnx

[√
−gRµν δgµν +Rδ

√
−g
]

=

∫
dnx
√
−g

[
Rµν −

1

2
gµνR

]
δgµν

= 0, (13)

which immediately implies that

Rµν −
1

2
Rgµν = 0 (14)

in vacuum.

Question 2 (4 points).

The Lagrangian density for electromagnetism in curved spacetime is

L =
√
−g
(
−1

4
FµνFµν +AµJ

µ

)
, (15)



Physics 480/581 Homework Assignment 8

where Jµ is the electric four-current and g is the determinant of the metric. Using the definition of
the stress-energy tensor

Tµν = −2
1√
−g

δS

δgµν
, (16)

where S =
∫
d4xL is the action, compute the stress energy tensor for electromagnetism. You may

find some of the results from Question 1 useful.
Solutions:
Here we are interested in the variation of the action S with respect to the inverse metric gµν . So, we
can think of S[gµν ] as a functional (i.e. a function of a function) and we are interested in computing
the functional derivative δS/δgµν . In computing this derivative, we assume that Fµν , Aµ and Jµ

are constant. First, note that the Lagrangian density depends on the inverse metric in this way

L =
√
−g
(
−1

4
gµαgνβFαβFµν +AµJ

µ

)
, (17)

where the last term is independent of the inverse metric since it is the contraction of a fundamental
one-form gauge field Aµ and with the current vector (i.e. not a one-form) Jµ.

The variation of S with respect to gµν is then

δS =

∫
d4x

[
δ(
√
−g)

(
−1

4
FµνFµν +AµJ

µ

)
+
√
−g
(
−1

4
(δgµαgνβ + gµαδgνβ)FαβFµν

)]
=

∫
d4x

[
δ(
√
−g)

(
−1

4
FµνFµν +AµJ

µ

)
+
√
−gδgµν

(
−1

4
(gγβFνβFµγ + gγαFαµFγν)

)]
=

∫
d4x

[
δ(
√
−g)

(
−1

4
FµνFµν +AµJ

µ

)
+
√
−gδgµν

(
−1

2
(gγαFαµFγν)

)]
, (18)

where we have relabeled some dummy indices. Now using Eq. (7), we get

δS =

∫
d4x
√
−gδgµν

[
−1

2
gµν

(
−1

4
FαβFαβ +AαJ

α

)
+

(
−1

2
gγαFαµFγν

)]
. (19)

We thus get

δS

δgµν
=
√
−g
[
−1

2
gµν

(
−1

4
FαβFαβ +AαJ

α

)
+

(
−1

2
gγαFαµFγν

)]
, (20)

using the rule of functional differentiation. The stress-energy tensor is then

Tµν = −2
1√
−g

δS

δgµν

= −2

[
−1

2
gµν

(
−1

4
FαβFαβ +AαJ

α

)
+

(
−1

2
gγαFαµFγν

)]
= gµν

(
−1

4
FαβFαβ +AαJ

α

)
+ gγαFαµFγν

= −1

4
gµνF

αβFαβ + gαγFµαFνγ + gµνAαJ
α. (21)



Physics 480/581 Homework Assignment 8

where we have used the antisymmetry of the Fµν and the symmetry of the metric to write gγαFαµFγν =
gαγFµαFνγ . Note that the last term involving the electric current is often not included in the elec-
tromagnetic stress-energy tensor since it describes the contribution of charged particles (typically
included in the matter stress-energy tensor) rather than that of electromagnetic field.

Question 3 (4 points).

Moore Problem 20.10
Solutions:

(a) This problem introduces you to the concept of local orthonormal frame (LOF). We shall denote
the basis vector in the LOF as ê(a), where we shall use latin indices to denote components of
tensors in the LOF. Our standard coordinate basis vectors ê(µ) can be written in terms of the
LOF basis vectors as

ê(µ) = e a
µ ê(a) (22)

where the component of ê(µ) in the direction of LOF basis vector ê(a), denoted e
a
µ is referred

as the “vielbein” or “tetrad”. The key properties of the vielbeins is that they are orthonormal
with respect to the standard coordinate basis metric

gµνe
µ
ae
ν
b = ηab, (23)

where eµa are the inverse vielbeins, defined via eµae a
ν = δµν and e a

µ e
µ
b = δab . Note that Moore

denotes the inverse vielbeins as eµa = (oa)
µ. Using Eq. (23), we can derive an alternative

relation between the vielbein and its inverse

e a
µ = gµνη

abeνb (24)

Now, if you know the components V µ of some vector V in our standard coordinate basis, the
components of V in the LOF basis are simply

V a = e a
µ V

µ. (25)

Similarly, if you know the stress-energy tensor components in a coordinate basis, its compo-
nents in the LOF basis will simply be

T ab = e a
µ e

b
ν T

µν , (26)

where T ab here is what Moore calls T abobs. Note that substituting Eq. (24) into Eq. (26) yield
Eq. (20.34) in Moore. Now the dominant energy condition (DEC) implies that the vector b is
causal if the vector a is also causal, where the components of b are

bβ = −T βνgναaα = −T βνaν . (27)

We want to show that a fluid’s four-momentum’s density πa ≡ T ta is causal in a LOF, where
the latin indices on π and T indicate that these are evaluated in the LOF.

πa = T ta = e t
µ e

a
ν T

µν (28)
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Now, in the coordinate basis, e t
µ is timelike since

gµνe t
µ e

t
ν = ηtt = −1. (29)

The four-velocity of an observer at rest in a LOF is uaobs = (1, 0, 0, 0). But the observer’s
four-velocity in the coordinate basis will also be uµ = (1, 0, 0, 0), since she’s at rest. Since

utobs = e t
µ u

µ

1 = e t
t > 0, (30)

and e t
µ is thus a causal vector in the coordinate basis. If the DEC is true, then this means

that bν = −T νµe t
µ is also causal, as per Eq. (27). We this get

πa = −e a
ν b

ν = −ba. (31)

Since b is causal, we indeed get that π is causal.

(b) Let’s assume the stress-energy tensor of a perfect fluid which is at rest (by definition) in its
LOF, and his given by T ab = (ρ0 + p0)u

aub + p0η
ab. Let’s compute the time and spatial

components of the DEC (Eq. (27))

bt = −T tbηbcac = −T ttηttat = ρ0a
t (32)

bi = −T ibηbcac = −T iiηiiai = −p0ai, (33)

where i = x, y, z. Now a is a causal vector, which means that

aaaa = ηaba
aab = −(at)2 + (ax)2 + (ay)2 + (az)2 ≤ 0, (34)

which implies that
(at)2 ≥ (ax)2 + (ay)2 + (az)2. (35)

Also at > 0. By the DEC, b is also causal, which means that bt > 0 and

bab
a = ηabb

abb = −(bt)2+(bx)2+(by)2+(bz)2 = −(ρ0a
t)2+p20((a

x)2+(ay)2+(az)2) ≤ 0. (36)

The worse possible case for this equation is when we saturate Eq. (35) (that is, we take the
equality). We then get

ηabb
abb = −(ρ0a

t)2 + p20(a
t)2 = (−ρ20 + p20)(a

t)2 ≤ 0, (37)

which implies that
ρ20 ≥ p20, (38)

since (at)2 > 0. Now using Eq. (32), we have ρ0 > 0 since both at > 0 and bt > 0 (by the
DEC). We thus get

ρ0 ≥ |p0|. (39)

(c) We have
bµ = −Tµνgναaα = Λgµνgναa

α = Λδµαa
α = Λaµ, (40)

which automatically implies that if a is causal, then b is causal. To see this, note that Λ is
positive, which means that bt > 0 if at > 0 and bµbµ = Λ2aµa

µ ≤ 0 if a is causal. Thus, a
stress-energy tensor of the form Λgµν satisfies the DEC.

(d) In part (a), we use the DEC to show that πa = T ta is causal. This means that πt > 0. Now,
πt = T tt = ρ0, which means that ρ0 > 0. Since this latter statement is the Weak Energy
condition (WEC), we just showed that the DEC implies the WEC.


