PHYS 480/581 General Relativity

Homework Assignment 9
 Due date: Friday 3/29/2024 5pm, submitted electronically on UNM Canvas

Question 1 (6 points).
Consider the Friedmann-Robertson-Lemaitre-Walker metric given by

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left[d x^{2}+d y^{2}+d z^{2}\right] \tag{1}
\end{equation*}
$$

where $a(t)$ is a function of coordinate time to be determined.
(a) Assuming that the stress-energy tensor is dominated by vacuum energy,

$$
\begin{equation*}
T_{\mu \nu}=-\frac{\Lambda}{8 \pi G} g_{\mu \nu} \tag{2}
\end{equation*}
$$

use the Einstein equation to determine $a(t)$.
(b) Now, assume instead that the stress-energy tensor is dominated by nonrelativistic matter with zero pressure such that

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
\rho_{\mathrm{m}}(t) & 0 & 0 & 0 \tag{3}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

where ρ_{m} is the rest-frame energy density of the matter. Using the covariant conservation of the stress-energy tensor $\nabla_{\mu} T^{\mu \nu}=0$, show that

$$
\begin{equation*}
\rho_{\mathrm{m}} \propto 1 / a(t)^{3} . \tag{4}
\end{equation*}
$$

(c) Using the solution given in Eq. (4), show that the Einstein equation implies that

$$
\begin{equation*}
a(t) \propto t^{2 / 3} \tag{5}
\end{equation*}
$$

for a universe dominated by nonrelativistic matter.

Question 2 (5 points).
Moore 23.6 a,c,d,e
Then show that the circumference of a circle of radius R centered on the cosmic string and at $z=t=$ constant is smaller than $2 \pi R$. The spacetime geometry around a cosmic string is thus said to have a deficit angle.

