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I. SPACETIME AS A MANIFOLD

[Manifolds are locally Rn] The four-dimensional Minkowski spacetime that we discussed in the context of Special
Relativity form a specific mathematical structure called a manifold. While we could spend a lot of time discussing the
formal definition of a manifold, an intuitive definition is sufficient here: an n-dimensional manifold M is constructed
by sewing together sets U that locally looks like Rn. By “looking like Rn”, we mean that for any subset U of M ,
there exists a one-to-one map φ : U → Rn that maps every point within U to a point in n-dimensional Euclidean
space (see Fig. 1 below). As you might expect for a physical system, this map needs to have nice properties, like
being differentiable. Care must be taken in how we sew the different subset U together to form M , but it’s mostly a
matter of respecting the standard composition of maps for two overlapping subset of M . In this course, we will be
mostly interested in 4D manifolds.

FIG. 1. Map between a subset U of manifold M to a subset of Rn. Reproduced from arXiv:gr-qc/9712019.

II. FOUR-VECTOR: DEFINITION

The above-mentioned 4D spacetime manifold can host different kind of mathematical entities. The first one we will
discuss here are four-vectors. Physically, four-vectors are defined as any four-component quantity whose components
transform according to a Lorentz transformation when we change between different inertial reference frames (we will
make this definition more rigorous down the road). For instance, for a four-vector p, we can transform it to another
inertial frame (moving at constant velocity in the positive x direction, say)
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Now, the above definition is a little backward, as Lorentz transformations are defined as the family of transformation
that leave the magnitude of four-vectors invariant. Going back to the principle of relativity, when we say that the
laws of physics are the same in every inertial reference frame, one thing we mean by that is that all inertial observers
agree on the magnitude of any four-vector.

[Four-vectors live in tangent space ] It is important to emphasize that any four-vector is located at a given point
in spacetime (rather than stretching from two points in spacetime). The picture you should have in mind is that at
every point p on some manifold M , there is a vector space containing all possible four-vectors located at this point;
this set of vector is known as the tangent space at p, or TpM (see Fig. 2 below). At a given point in spacetime,
four-vectors form a vector space respecting the usual addition and multiplication by scalar rules, that is,

(a+ b)(p + q) = ap + aq + bp + bq, (2)
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where a and b are real numbers and p and q are four-vectors.
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plane which is tangent to the point. But inspiration aside, it is important to think of these

vectors as being located at a single point, rather than stretching from one point to another.

(Although this won’t stop us from drawing them as arrows on spacetime diagrams.)
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Later we will relate the tangent space at each point to things we can construct from the

spacetime itself. For right now, just think of Tp as an abstract vector space for each point

in spacetime. A (real) vector space is a collection of objects (“vectors”) which, roughly

speaking, can be added together and multiplied by real numbers in a linear way. Thus, for

any two vectors V and W and real numbers a and b, we have

(a + b)(V + W ) = aV + bV + aW + bW . (1.22)

Every vector space has an origin, i.e. a zero vector which functions as an identity element

under vector addition. In many vector spaces there are additional operations such as taking

an inner (dot) product, but this is extra structure over and above the elementary concept of

a vector space.

A vector is a perfectly well-defined geometric object, as is a vector field, defined as a

set of vectors with exactly one at each point in spacetime. (The set of all the tangent spaces

of a manifold M is called the tangent bundle, T (M).) Nevertheless it is often useful for

concrete purposes to decompose vectors into components with respect to some set of basis

vectors. A basis is any set of vectors which both spans the vector space (any vector is

a linear combination of basis vectors) and is linearly independent (no vector in the basis

is a linear combination of other basis vectors). For any given vector space, there will be

an infinite number of legitimate bases, but each basis will consist of the same number of

FIG. 2. Tangent space Tp of a two-dimensional manifold at point p. Reproduced from arXiv:gr-qc/9712019.

[Dual vector space and inner product] We can also define a dual vector space at point p of spacetime man-
ifold M , T ∗pM . An element ω of T ∗pM is a map ω : TpM → R which maps a four-vector to the real numbers.
ω is usually referred to as a “dual vector” or more generally, a one-form. Basically, a one-form is something that
takes a four-vector (in this 4D context) and returns a real number. This defines an inner (dot) product for four-vectors.

[Analogy in 3D Euclidean space] The above might seem a little esoteric to you if you never seen this before,
but you are already familiar with such a construction in 3D Euclidean space: the standard dot product between two
3-vectors. For example, take two real 3-vectors ~u and ~v defined at point p. You know how to compute their dot
product, which in cartesian admits the form

~u · ~v = uxvx + uyvy + uzvz ∈ R. (3)

Now in the above, ~u can be thought of as a dual vector living in T ∗pM , while ~v is a vector living in TpM . We can say that
within the above dot product, ~u takes a vector ~v and maps it to a real number. Now, the reason we never really care
whether ~u lives in T ∗pM or TpM when we consider 3D Euclidean vectors is that T ∗pM = TpM in this case, that is, they
are the same vector space. This is because the metric (more on that later) in Euclidean space is just the identity map.
So in 3D Euclidean space we can afford to be cavalier about whether an objects live in TpM or T ∗pM . On the other
hand, in SR and GR, we will need to be very careful about whether our objects is a vector or a dual vector (one-form).

[Inner product of four-vectors] Using the above construction, the inner (or dot) product 〈 , 〉 between the dual
vector ω and the vector p can be written as

〈ω,p〉 = ω · p = ω(p) = −ωtpt + ωxpx + ωypy + ωzpz, (4)

where we have written the product explicitly in terms of the components ωt, pt, px, etc. of the two vectors in some
cartesian basis, assuming that we are in Minkowski space. There is actually quite a bit packed in that last equality
as we haven’t yet discuss basis vectors for the vector spaces TpM and T ∗pM , or even how to relate a vector in TpM
to its dual in T ∗pM . For now, take the above as the definition of the inner product between two four-vectors. The
crucial point though is that the above inner product is the same in all inertial frame, so all initial observers will agree
on its value (see box 3.1).

[Norm-squared of four-vectors] The above inner product can be used which can be used to define the norm (square
magnitude) of a four-vector

p · p = −(pt)2 + (px)2 + (py)2 + (pz)2. (5)

The crucial point is that this vector norm is frame-independent, so all observers will always agree on its value. We
will expand more on the structure of this inner product once we introduce the metric.

III. IMPORTANT FOUR-VECTORS

The two most important four-vectors we will encounter are the four-velocity u and the four-momentum p.
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A. Four-velocity

[Four-velocity as the tangent vector to a particle’s worldline] We have already seen the proper time dτ =√
−ds2 as the time interval measured by a clock moving along a particle’s worldline, where ds2 = −dt2+dx2+dy2+dz2

is the spacetime line element (in cartesian coordinates here). Imagine that we use this proper time τ to parameterize the
particle’s worldline as x(τ) = (t(τ), x(τ), y(τ), z(τ)) (this represents a curve in spacetime, where τ is a monotonically
increasing parameter along the curve). The four-velocity is defined as the rate of change of this wordline with respect
to τ

u ≡ dx

dτ
=

 dt/dτ
dx/dτ
dy/dτ
dz/dτ

 , (6)

which is vector that is always tangential to the particle’s worldline.

[Normalization of four-velocity] Note that no matter what the particle worldline is, we always have u · u = −1,

which can easily be proven using dτ =
√
−ds2 (see box 3.2). The relationship between three-velocity ~v = d~x/dt =

(vx, vy, vz) and the four-velocity u is

u =


1√

1−v2

vx√
1−v2
vy√
1−v2

vz√
1−v2

 , (7)

where v =
√
v2x + v2y + v2z .

[Low-speed limit of four-velocity] Note that for v � 1, the four-velocity reduces to

u '

 1
vx
vy
vz

 , v � 1. (8)

B. Four-momentum

For an object with a nonzero mass m, the four-momentum is defined as

p = mu =


m√
1−v2

mvx√
1−v2
mvy√
1−v2

mvz√
1−v2

 . (9)

Very generally, the zeroth component of the four-momentum is the energy of the object p0 = E, while the three
spatial components form the three-momentum of the object.

[Relation to three-momentum] Note that in relativity, the three-momentum of an object is not just ~p = m~v but
rather

~p =
m~v√
1− v2

, (10)

which of course reduces to ~p ≈ m~v if v � 1.
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[E and ~p are more fundamental than ~v ] Note that since v is frame dependent, physicists prefer to think about
four-momentum directly in terms of energy and three-momentum, i.e. p = (E, ~p). In fact, E and ~p are really the
fundamental quantities here (rather than v), and v is actually defined from E and ~p

~v ≡ ~p

E
. (11)

Of course, E and ~p are not frame-independent quantities on their own (i.e. their values is generally different in
different inertial frame).

[Norm-squared of four-momentum] However, the squared norm of the four-momentum is the same in every frame

p · p = (mu) · (mu) = m2(u · u) = −m2. (12)

Writing p = (E, ~p), we then have

p · p = −E2 + p2 = −m2 → E2 = m2 + p2. (13)

In particular, for a massless particle (m = 0) such as a photon, we have

p · p = 0 and E = p. (14)

[Four-momentum is conserved ] In any process, like a 2 to 2 scattering event 1 + 2→ 3 + 4 in which two particles
collides and two (possibly new) particles come out, four-momentum is always conserved

p1 + p2 = p3 + p4. (15)


