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I. THE VERY LARGE, EXPANDING UNIVERSE

For a very long time, most astronomers thought that the whole Universe was simply our own galaxy. From there,
some of the main steps towards establishing the very large, expanding Universe that we know today are:

• In 1924, when Hubble made a convincing argument that “nebulae” (fuzzy objects in the night sky, see right
panel of Fig. 1) where not part of the Milky Way, but distinct galaxies. This was initially published in the New
York Times on November 23rd, 1924 (see left panel of Fig. 1).

FIG. 1. Left Panel: New York Times article announcing Hubble’s discovery that nebulae are “island universes” (galaxies)
similar to our own. Right panel: Photographic plate image of the Andromeda galaxy taken with the 100-inch Hooker telescope
on Mount Wilson in 1923. Note the two stars labeled with N , marking them as variable stars (cepheids), which Hubble used
to measure the distance to Andromeda.

• Then, Lemâıtre (in 1927) and Hubble (in 1929) established that there is a linear relationship between the
distance d to a galaxies and its recession speed v

v ≈ H0d, (1)

where H0 is called the Hubble constant. This is now known as the Hubble-Lemâıtre law. This linear relationship
is illustrated in Fig. 2. This discovery showed that the Universe is expanding, a prediction of General Relativity
initially rejected by Einstein, but then quickly accepted by the whole astronomical community. Note that Eq. (1)
is only valid for relatively short distances, and need to be generalized for more distant galaxies.

II. THE COSMOLOGICAL PRINCIPLE

In the early days of General Relativity, Einstein postulated that a most natural universe would be both homegeneous
and isotropic. This is now known as the cosmological principle.

• Isotropy: On average, the Universe looks the same in every direction; there is no special direction.

• Homogeneity: On average, every large-enough region looks the same; there is no preferred center or point in the
Universe.
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FIG. 2. First measurement of the Hubble-Lemâıtre law by Hubble in 1929. Note that errors in the measurement of distance
lead Hubble to infer a value of H0 that is nearly 10 times larger than the actual value known today.

Detailed observations of the cosmic microwave background (CMB) and of the distribution of galaxies on large scales
validate the Cosmological Principle to a high degree of accuracy. The Cosmological Principle coupled with the
expansion of the Universe means that the expansion has no preferred center. That is, just like we see every galaxy
in the sky moving away from us, any observer in any of these other galaxies will also see every galaxies moving
away from them. This is illustrated in Fig. 3 below, where you can think of galaxies on a regular cartesian grid. In
an homogeneous isotropic expanding Universe, the grid itself is expanding uniformly: every galaxy see its nearest
neighbors receding away.

THE STANDARD MODEL AND BEYOND 

today. It is convenient to describe this effect by introducing the scale factor a, 
whose present value is set to one. At earlier times a was smaller than it is today. 
We can picture space as a grid as in Figure 1.1 which expands uniformly as time 
evolves. Points on the grid maintain their coordinates, so the comoving distance 
between two points — which just measures the difference between coordinates — 
remains constant. However, the physical distance is proportional to the scale factor, 
and the physical distance does evolve with time. 
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Figure 1.1. Expansion of the universe. The comoving distance between points on a hypothet-
ical grid remains constant as the universe expands. The physical distance is proportional to 
the comoving distance times the scale factor, so it gets larger as time evolves. 

In addition to the scale factor and its evolution, the smooth universe is char-
acterized by one other parameter, its geometry. There are three possibilities: flat, 
open, or closed universes. These different possibilities are best understood by con-
sidering two freely traveling particles which start their journeys moving parallel to 
each other. A flat universe is Euclidean: the particles remain parallel as long as 
they travel freely. General relativity connects geometry to energy. Accordingly, a 
flat universe is one in which the energy density is equal to a critical value, which we 
will soon see is approximately 10~^^ g cm""*̂ . If the density is higher than this value, 
then the universe is closed: gradually the initially parallel particles converge, just 
as all lines of constant longitude meet at the North and South Poles. The analogy 
of a closed universe to the surface of a sphere runs even deeper: both are said to 
have positive curvature, the former in three spatial dimensions and the latter in two. 
Finally, a low-density universe is open, so that the initially parallel paths diverge, 
as would two marbles rolling off a saddle. 

To understand the history of the universe, we must determine the evolution 
of the scale factor a with cosmic time t. Again, general relativity provides the 
connection between this evolution and the energy in the universe. Figure 1.2 shows 
how the scale factor increases as the universe ages. Note that the dependence of a 
on t varies as the universe evolves. At early times, a oct^^^ while at later times the 
dependence switches to a oc t'^^'^. How the scale factor varies with time is determined 
by the energy density in the universe. At early times, one form of energy, radiation. 

FIG. 3. Homogeneous and isotropic expansion. In comoving coordinates, the coordinates of the points are fixed, but the
physical distance between them expands with the scale factor a(t). Figure from Dodelson (2003).

III. THE METRIC OF THE UNIVERSE

We would like to write down a trial metric that respects the Cosmological Principle and can describe an expanding
universe. In homework 9, we’ve already introduced the metric

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (2)

where a(t) is a dimensionless function of coordinate time called the scale factor. Note that this metric satisfies the
Cosmological Principle: the coordinate x, y, and z are all treated equally so the metric is spatially isotropic, and none
of the metric component depends explicitly on the coordinates (x, y, z) so the metric is the same at every point in
space (that is, it is spatially homogeneous). Further, if a(t) is an increasing function of time than it could describe the
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expansion of the Universe. Thus, the metric above is a good first guess. The coordinates used to write it down are
called comoving coordinates. In this coordinate system, the spatial coordinates of events are fixed, but the coordinate
grid itself is expanding (see Fig. 3).

A. Distances and Ages

On the coordinate grid, the comoving distance dc between coordinate points is always fixed. To compute the
physical distance dp between two grid points, once simply needs to multiply the comoving distance by the value of
the scale factor at the time of interest, that is,

dp(t) = a(t)dc. (3)

Note that we usually normalize a(t) such that a(t0) = 1 today, where t0 is the age of the Universe. So, today the
physical and comoving distance between two spacetime events coincide, but this wasn’t true in the past and won’t be
true in the future. It is also usually assumed that at the Big Bang (t = 0), we have a(0) = 0.

An example of this is the comoving distance travelled by a streaming photon moving along the x-axis since the Big
Bang (t = 0). Since photons travel on null (lightlike) trajectories, we have ds2 = 0. The comoving distance is then

dx =
dt

a(t)∫ dc

0

dx =

∫ t

0

dt′

a(t′)

dc(t) =

∫ t

0

dt′

a(t′)
. (4)

The physical distance travelled by the photon is then

dp(t) = a(t)

∫ t

0

dt′

a(t′)
. (5)

Note that to solve these integrals, we need to know the behavior of a(t), which is gotten by solving the Einstein
equation. At this point, it is important to introduce the Hubble rate

H ≡ ȧ

a
, (6)

where a dot represents a derivative with respect to coordinate time t. In general, the Hubble rate H is a function of
time. Again, this time dependence will be specified via the Einstein equation. The Hubble rate provides us a way
to compute the age of the Universe (and more generally, the amount of coordinate time between any two spacetime
events). Using the fact that

da

dt
= aH

da

aH
= dt, (7)

the age of the Universe is

t0 =

∫ t0

0

dt

=

∫ 1

0

da

aH
. (8)

B. Spatial Curvature

However, Eq. (2) is not the only metric respecting all the symmetries required by the Cosmological Principle and
the expansion. In the above metric, two lines that are initially parallel will stay parallel forever. But note that none
of the requirement for the symmetries of the cosmological metric enforces that. So we are free to consider spatial
metrics for which two initially parallel lines either converge or diverge. Thus, in addition to the spatially flat case
given in Eq. (2), there are two other spatial geometries that we can have
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• A spatial geometry where two initially parallel lines converge looks like a sphere. This is referred to as a closed
universe.

• A spatial geometry where two initially parallel lines diverge looks like a saddle. This is referred to as a open
universe.

Again, whether the Universe is flat, open, or closed is not an arbitrary choice; it is dictated by the Einstein equation
depending on the energy-momentum content of the Universe.

For non-flat spatial slices, it is easiest to write down the metric in terms of spherical-like comoving coordinates

ds2 = −dt2 + a2(t)[r2 + q2(r)(dθ2 + sin2 θdφ2)], (9)

where r is the comoving radial distance from the origin. The function q(r) enforces the spatial geometry; for a spatially
flat universe we must have q(r) = r. Determining the behavior of a(t) and q(r) requires us to write down the Einstein
equation. These steps are outlined in Moore and we won’t reproduce them here:

q(r) =


R sin (r/R) if κ > 0, (closed)

r if κ = 0, (flat)

R sinh (r/R) if κ < 0, (open)

(10)

where κ = ±1/R2, where R is the radius of curvature of spatial slices. These expressions make clear that only for r ∼ R
will we start being sensitive to the presence of spatial curvature, since for r/R � 1, R sin (r/R) ∼ R sinh (r/R) ∼ r.
The sign and value of κ will be dictated by the Einstein equation. We will look at this next, but before doing so let me
note that observations indicate that our Universe is spatially flat to very good accuracy. Thus, while the discussion
of spatial curvature is interesting at the physical level, it doesn’t seem to be very relevant for the structure of our
Universe.


