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I. SPONTANEOUS PARTICLE CREATION NEAR THE EVENT HORIZON

Positive and Negative Energy When discussing the geodesic equation for the motion of test particle in the
Schwarzschild geometry, we saw that the relativistic energy per unit mass

e =

(
1− 2GM

r

)
dt

dτ
, (1)

is always conserved. Now, for r > 2GM , this energy is always positive as t is timelike in this region. For r < 2GM
however, (1 − 2GM/r) < 0 and dt/dτ can have either sign since t is spacelike in this region. Thus, inside the event
horizon, we can have particles with negative relativistic energy per unit mass. This might seem a bit academic at
this point as we know that anything within the event horizon will eventually reach the singularity at r = 0, and thus
have no impact on a far-away observer.

Impact of Quantum Mechanics Nevertheless, once quantum mechanics (really, quantum field theory) is taken into
account, the fact that negative energy states are allowed by General Relativity becomes important. Indeed, quantum
field theory allows particle-antiparticle pairs to pop out of the vacuum. In flat spacetime these particle-antiparticle
pairs only exist for a tiny amount of time before annihilating back to the vacuum. Their possible duration ∆t is
approximately given by the Heisenberg uncertainty principle ∆t ∼ ~/E, where E is the energy of one of the component
of the particle-antiparticle pair.

Pair creation at the horizon Now, what happens is this spontaneous creation of particle-antiparticle pairs occurs
near the event horizon of a black hole? Since energy is conserved, we can say that one particle will have energy E,
while the other particle has energy −E. Imagine that the negative energy particle falls through the event horizon.
Since negative energy state are classically allowed by General Relativity, there is no longer the need for this particle
to annihilate in the short time ∆t ∼ ~/E and this particle with E < 0 can follow its geodesic all the way to r = 0,
effectively reducing the mass of the black hole. By momentum conservation, the other particle from the pair (that
with E > 0) will travel away from the black hole. From the point of view of an observer at infinity, it looks like the
black hole is radiating energy away. This radiation is called Hawking radiation.

II. ENERGY OF OUTGOING PARTICLES AND HAWKING TEMPERATURE

Let’s try to estimate the energy of the radiated particles and how it is related to the mass M of the black hole.
Consider a particle-antiparticle pair popping out of the vacuum at rest at a radial coordinate r = 2GM + ε, with
ε� 2GM . If the negative energy particle is to cross into the event horizon, it has to survive for an amount of proper
time

∆τ ∼ ~
E
. (2)

The particle will follow a geodesic as it makes its way into the event horizon. From the normalization of the four-
velocity gµνu

µuν = −1, we can derive the following equation

dr

dτ
= ±

√
e2 −

(
1− 2GM

r

)(
1 +

`2

r2

)
. (3)

Since the particle is initially at rest, we have dr/dτ = 0 and ` = 0 initially, which implies that

0 = e2 −
(

1− 2GM

2GM + ε

)(
1 +

0

r2

)
⇒ e2 = 1− 2GM

2GM + ε
. (4)
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The subsequent evolution of the particle is gotten by isolating dτ in Eq. (3) and integrating on both sides

∆τ = −
∫ 2GM

2GM+ε

dr
1√

− 2GM
2GM+ε + 2GM

r

(5)

Now, make the substitution ρ = r − 2GM , dρ = dr.

∆τ = −
∫ 2GM

2GM+ε

dr
1√

− 2GM
2GM+ε + 2GM

r

=

∫ ε

0

dρ
1√

− 2GM
2GM+ε + 2GM

ρ+2GM

=

∫ ε

0

dρ
1√

− 1
1+(ε/2GM) + 1

1+ρ/(2GM)

≈
∫ ε

0

dρ
1√

−(1− ε
2GM ) + 1− ρ

2GM

≈
∫ ε

0

dρ
1√

ε
2GM −

ρ
2GM

≈
∫ ε

0

dρ

√
2GM√
ε− ρ

≈
√

2GM(−2
√
ε− ρ)

∣∣∣ε
0

≈ 2
√

2GMε. (6)

Thus the characteristic energy of the particle will be

E ∼ ~
∆τ

=
~

2
√

2GMε
. (7)

Now, we would like to convert this value of the energy to what an observer at infinity will see. In box 16.2, we derive
that

E∞ =

√
1− 2GM

r
E. (8)

Plugging r = 2GM + ε and the value of E from Eq. (7), we then get

E∞ =

√
1− 2GM

2GM + ε

~
2
√

2GMε
=

√
ε

2GM

~
2
√

2GMε
≈ ~

4GM
, (9)

which is independent of ε.

Very small energy for large black holes Note that E∞ ∝ 1/M , which means that particles coming out of a
more massive black hole will have a lower energy than those coming out from a smaller mass black hole. Also, it’s
important to realize that this energy is tiny for typical astrophysical black holes. This means that only photons
(which are massless) can really be emitted by this mechanism, as other known particles (electrons, neutrinos, etc.)
are too massive to be created in this fashion. Importantly, note that the factor of 1/(4GM) is the local gravitational
acceleration at the event horizon. Indeed, just like the gravitational acceleration at the surface of the Earth is

g =
GM⊕
R2
⊕
, (10)

the gravitational acceleration at the event horizon will be

κ =
GM

r2s
=

GM

(2GM)2
=

1

4GM
. (11)
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Here, the terminology of surface gravity is usually used when referring to κ.

Thermal radiation out of a black hole In general, we expect the radiation coming out the black hole to have an
energy distribution centered on the typical energy given in Eq. (9). In fact, Hawking showed that the energy spectrum
of the outgoing radiation is exactly that of a blackbody with temperature given by

kBTH =
~κ
2π
, (12)

where kB is Boltzmann’s constant. Plugging in some numbers yields

TH =
6.17× 10−8K

M/M�
, (13)

which implies that a solar mass black hole emits radiation with a temperature T ∼ 60 nK � TCMB = 2.725 K. This
radiation is nearly impossible to detect against such a hotter foreground of cosmic microwave background photons.

Surface gravity and energy emitted We note that the surface gravity for a non-rotating black hole (including the
case where the black hole has an electric charge), the surface gravity is given by

κ =
1

2

∂

∂r
(gtt)

∣∣∣
r=rEH

, (14)

where rEH is the radius of the event horizon. Since the hawking temperature is proportional to the surface gravity,
one way to interpret a high Hawking temperature is that it is coming from a given region of high spacetime curvature.
Basically, since it takes a lot of mass-energy to curve spacetime significantly, regions of high curvature have a lot
of energy to radiate and thus shine hotter in Hawking radiation. We can think of these highly curved regions of
spacetime as tightly-compressed springs, with Hawking radiation providing a mechanism to slowly unwind the tension
in the spring and relax spacetime to its natural state, flat spacetime.

Lifetime of a black hole The fact that black holes can radiate energy away implies that they can evaporate over
time. Using the Stefan-Boltzmann law, the rate of mass loss for a black hole is given by

dM

dt
= −AσT 4

H , (15)

where A is the area of the event horizon and σ is the Stefan-Boltzmann constant. This can be integrated to give the
lifetime of the black hole (box 16.4)

τlife =
256π3k4B
3Gσ~4

(GM)3. (16)

For astrophysical black holes, this lifetime is very long, much longer than the age of the Universe.

III. BLACK HOLE ENTROPY

Thermodynamics implies that any object that has a temperature must have an accompanying entropy S, via the
relation

1

T
=
∂S

∂U
, (17)

where U is the internal energy, which for a black hole is simply its mass. We can integrate the above expression to
obtain an expression for the entropy of a black hole

S =
kBA

4G~
, (18)

where A is the area of the event horizon. So, the entropy of a black hole is proportional to its area. This is weird, as
usually entropy scales with the volume of an object. Since the entropy is given by S = kb ln Ω, where Ω is the number
of microstates that are internal to the black holes. What are there microstates? We don’t know for sure, but this
is something that can only be understood from the point of view of quantum gravity, for which we don’t yet have a
complete theory. All we can say now is that any successful theory of quantum theory of quantum gravity will have to
explain the area law for black hole entropy.


