PHYS 480/581: General Relativity Levi-Civita Symbol

Prof. Cyr-Racine

(Dated: February 12, 2024)

I. THE COMPLETELY ANTI-SYMMETRIC SYMBOL

Consider the following completely antisymmetric object

$$
\tilde{\epsilon}_{\mu \nu \sigma \rho}= \begin{cases}+1 & \text { if } \mu \nu \sigma \rho \text { are even permutation of } 0123 \tag{1}\\ -1 & \text { if } \mu \nu \sigma \rho \text { are odd permutation of } 0123 \\ 0 & \text { otherwise }\end{cases}
$$

The main question we want to answer here is whether $\tilde{\epsilon}_{\mu \nu \sigma \rho}$ is a tensor. Consider the combination

$$
\begin{equation*}
\tilde{\epsilon}_{\mu \nu \sigma \rho} \frac{\partial x^{\mu}}{\partial x^{\prime \alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime \beta}} \frac{\partial x^{\sigma}}{\partial x^{\prime \gamma}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}}=\tilde{\epsilon}_{\mu \nu \sigma \rho} J_{\alpha}^{\mu} J_{\beta}^{\nu} J_{\gamma}^{\sigma} J_{\delta}^{\rho} \tag{2}
\end{equation*}
$$

where we have used the notation

$$
\begin{equation*}
J_{\alpha}^{\mu} \equiv \frac{\partial x^{\mu}}{\partial x^{\prime \alpha}} \tag{3}
\end{equation*}
$$

To obtain some intuition about what the above combination is equal to, consider a two-dimensional example with

$$
J_{\alpha}^{\mu}=\left[\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}\right]
$$

We then have

$$
\begin{equation*}
\tilde{\epsilon}_{\mu \nu} J_{\alpha}^{\mu} J_{\beta}^{\nu}=J_{\alpha}^{0} J_{\beta}^{1}-J_{\alpha}^{1} J_{\beta}^{0} . \tag{5}
\end{equation*}
$$

These are for equations, one for each choice of α, β. Let's tabulate the results for each possible choice: These results

$$
\begin{array}{|c|c|}
\alpha & \beta \\
\hline 0 & \tilde{\epsilon}_{\mu \nu} J_{\alpha}^{\mu} J_{\beta}^{\nu} \\
\hline 0 & 1 \\
1 & a d-c a=0 \\
1 & 0 \\
1 & 1 \\
b c-d a=\operatorname{det} J \\
b d-d b=0
\end{array}
$$

can be summarized via the simple result

$$
\begin{equation*}
\tilde{\epsilon}_{\mu \nu} J_{\alpha}^{\mu} J_{\beta}^{\nu}=\tilde{\epsilon}_{\alpha \beta}^{\prime} \operatorname{det} J \tag{6}
\end{equation*}
$$

The same results apply in four dimensions

$$
\begin{equation*}
\tilde{\epsilon}_{\mu \nu \sigma \rho} J_{\alpha}^{\mu} J_{\beta}^{\nu} J_{\gamma}^{\sigma} J_{\delta}^{\rho}=\tilde{\epsilon}_{\alpha \beta \gamma \delta}^{\prime} \operatorname{det} J=\tilde{\epsilon}_{\alpha \beta \gamma \delta}^{\prime}\left|\frac{\partial x}{\partial x^{\prime}}\right| \tag{7}
\end{equation*}
$$

where we have used the common notation $\left|\frac{\partial x}{\partial x^{\prime}}\right|$ to denote the determinant of the Jacobian for the coordinate transformation $x^{\mu} \rightarrow x^{\mu}$. We can invert the above relation to write

$$
\begin{equation*}
\tilde{\epsilon}_{\alpha \beta \gamma \delta}^{\prime}=\left|\frac{\partial x^{\prime}}{\partial x}\right| \frac{\partial x^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime \beta}} \frac{\partial x^{\sigma}}{\partial x^{\prime \gamma}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}} \tilde{\epsilon}_{\mu \nu \sigma \rho}, \tag{8}
\end{equation*}
$$

where we have used the fact that $\operatorname{det}\left(J^{-1}\right)=(\operatorname{det} J)^{-1}$. The above is not the transformation law of tensors due to the presence of the determinant of the Jacobian. Thus, $\tilde{\epsilon}_{\mu \nu \sigma \rho}$ is not a tensor, which is why we called it the Levi-Civita symbol. In fact, $\tilde{\epsilon}_{\mu \nu \sigma \rho}$ is an example of tensor densities.

