PHYS 480/581
 General Relativity

Review before midterm

Question 1.

Show that for a diagonal metric $g_{\mu \nu}$, we have
(a) $\Gamma_{\mu \nu}^{\lambda}=0$,
(b) $\Gamma_{\mu \mu}^{\lambda}=-\frac{1}{2 g_{\lambda \lambda}} \partial_{\lambda} g_{\mu \mu}$,
(c) $\Gamma_{\mu \lambda}^{\lambda}=\partial_{\mu}\left(\ln \sqrt{\left|g_{\lambda \lambda}\right|}\right)$,
(d) $\Gamma_{\lambda \lambda}^{\lambda}=\partial_{\lambda}\left(\ln \sqrt{\left|g_{\lambda \lambda}\right|}\right)$,
where $\mu \neq \nu \neq \lambda$ and repeated indices are not summed over.

Solutions:

We first note that for a diagonal metric, we the inverse metric components are $g^{\lambda \lambda}=1 / g_{\lambda \lambda}$. For part (a),

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \lambda}\left(\partial_{\mu} g_{\nu \lambda}+\partial_{\nu} g_{\lambda \mu}-\partial_{\lambda} g_{\mu \nu}\right)=0, \tag{1}
\end{equation*}
$$

since all three metric components appearing in the above are all off-diagonal (since $\mu \neq \nu \neq \lambda$) are thus zero. For part (b),

$$
\begin{align*}
\Gamma_{\mu \mu}^{\lambda} & =\frac{1}{2} g^{\lambda \lambda}\left(\partial_{\mu} g_{\mu \lambda}+\partial_{\mu} g_{\lambda \mu}-\partial_{\lambda} g_{\mu \mu}\right) \\
& =-\frac{1}{2} g^{\lambda \lambda} \partial_{\lambda} g_{\mu \mu} \\
& =-\frac{1}{2 g_{\lambda \lambda}} \partial_{\lambda} g_{\mu \mu}, \tag{2}
\end{align*}
$$

since $g_{\mu \lambda}=g_{\lambda \mu}=0$ for $\mu \neq \lambda$. For part (c),

$$
\begin{align*}
\Gamma_{\mu \lambda}^{\lambda} & =\frac{1}{2} g^{\lambda \lambda}\left(\partial_{\mu} g_{\lambda \lambda}+\partial_{\lambda} g_{\lambda \mu}-\partial_{\lambda} g_{\mu \lambda}\right) \\
& =\frac{1}{2 g_{\lambda \lambda}} \partial_{\mu} g_{\lambda \lambda} \\
& =\frac{1}{2} \partial_{\mu}\left(\ln g_{\lambda \lambda}\right) \\
& =\partial_{\mu}\left(\ln \sqrt{\left|g_{\lambda \lambda}\right|}\right), \tag{3}
\end{align*}
$$

where the absolute value is needed to ensure that resulting Christoffel is real. For part (d),

$$
\begin{align*}
\Gamma_{\lambda \lambda}^{\lambda} & =\frac{1}{2} g^{\lambda \lambda}\left(\partial_{\lambda} g_{\lambda \lambda}+\partial_{\lambda} g_{\lambda \lambda}-\partial_{\lambda} g_{\lambda \lambda}\right) \\
& =\frac{1}{2 g_{\lambda \lambda}} \partial_{\lambda} g_{\lambda \lambda} \\
& =\partial_{\lambda}\left(\ln \sqrt{\left|g_{\lambda \lambda}\right|}\right) . \tag{4}
\end{align*}
$$

Question 2.

Consider the metric

$$
\begin{equation*}
d s^{2}=\frac{d p^{2}}{1-k p^{2}}+p^{2} d q^{2} \tag{5}
\end{equation*}
$$

where k is a real constant.
(a) Does this metric describe a curved or flat space?
(b) Is this space maximally symmetric?
(c) Write the p and q components of the geodesic equation.

Solutions:

To determine if a space is curved, we need to see if the Riemann tensor is non-vanishing. In two dimensions, there is only one independent component of the Riemann tensor, which we can take to be $R^{p}{ }_{q p q}$. Let's first compute the Christoffel connection coefficients (in 2D we have 6 independent components; in general in n dimensions we have $n^{2}(n+1) / 2$ independent Christoffels). Note that the metric is independent of the coordinate q, so all q derivatives vanish. Using the results from the above question, we have

$$
\begin{align*}
\Gamma_{q q}^{p} & =-\frac{1}{2}\left(1-k p^{2}\right) \partial_{p} g_{q q} \\
& =-\frac{1}{2}\left(1-k p^{2}\right) \partial_{p}\left(p^{2}\right) \\
& =-p\left(1-k p^{2}\right) . \tag{6}
\end{align*}
$$

We also have $\Gamma_{p p}^{q}=\Gamma_{q q}^{q}=\Gamma_{q p}^{p}=0$ since they all involve q derivatives. We are only missing two connection coefficients

$$
\begin{align*}
\Gamma_{p q}^{q} & =\partial_{p}\left(\ln \sqrt{g_{q q}}\right) \\
& =\partial_{p} \ln p \\
& =\frac{1}{p}, \tag{7}
\end{align*}
$$

$$
\begin{align*}
\Gamma_{p p}^{p} & =\frac{1}{2 g_{p p}} \partial_{p} g_{p p} \\
& =\frac{1-k p^{2}}{2} \partial_{p}\left(\frac{1}{1-k p^{2}}\right) \\
& =-\frac{1-k p^{2}}{2} \frac{-2 k p}{\left(1-k p^{2}\right)^{2}} \\
& =\frac{k p}{1-k p^{2}} \tag{8}
\end{align*}
$$

The Riemann tensor is then

$$
\begin{align*}
R_{q p q}^{p} & =\partial_{p} \Gamma_{q q}^{p}-\partial_{q} \Gamma_{p q}^{p}+\Gamma_{p \lambda}^{p} \Gamma_{q q}^{\lambda}-\Gamma_{q \lambda}^{p} \Gamma_{q p}^{\lambda} \\
& =\partial_{p}\left(-p\left(1-k p^{2}\right)\right)+\Gamma_{p p}^{p} \Gamma_{q q}^{p}-\Gamma_{q q}^{p} \Gamma_{q p}^{q} \\
& =-1+3 k p^{2}-\frac{k p}{1-k p^{2}} p\left(1-k p^{2}\right)+p\left(1-k p^{2}\right) \frac{1}{p} \\
& =k p^{2} . \tag{9}
\end{align*}
$$

Since the Riemann is nonzero, then this space is curved. Let's compute the Ricci tensor and Ricci scalar.

$$
\begin{align*}
R_{p p} & =R^{\lambda}{ }_{p \lambda p} \\
& =R^{q}{ }_{p q p} \\
& =g^{q q} g_{p p} R^{p}{ }_{q p q} \\
& =\frac{1}{p^{2}\left(1-k p^{2}\right)} k p^{2} \\
& =\frac{k}{1-k p^{2}} . \tag{10}\\
& \\
R_{q q} & =R^{\lambda}{ }_{q \lambda q} \\
& =R^{p}{ }_{q p q} \tag{11}\\
& =k p^{2}
\end{align*}
$$

And finally $R_{p q}=R^{\lambda}{ }_{q \lambda p}=0$. The scalar curvature is then

$$
\begin{align*}
R & =g^{\mu \nu} R_{\mu \nu} \\
& =g^{p p} R_{p p}+g^{q q} R_{q q} \\
& =\left(1-k p^{2}\right) \frac{k}{1-k p^{2}}+\frac{1}{p^{2}} k p^{2} \\
& =2 k, \tag{12}
\end{align*}
$$

which is a constant. Thus this represents a space that has the same curvature everywhere. This seems to suggest that this space is highly symmetric. For a maximally symmetric space, we must have

$$
\begin{equation*}
R_{\rho \sigma \mu \nu}=\frac{R}{n(n-1)}\left(g_{\rho \mu} g_{\sigma \nu}-g_{\rho \nu} g_{\sigma \mu}\right) . \tag{13}
\end{equation*}
$$

So for us,

$$
\begin{align*}
R_{p q p q} & =\frac{2 k}{2}\left(g_{p p} g_{q q}-g_{p q} g_{q p}\right) \\
& =k \frac{1}{1-k p^{2}} p^{2} \\
& =\frac{k p^{2}}{1-k p^{2}}, \tag{14}
\end{align*}
$$

which is consistent with what we have above.

