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I. THE SCHWARZSCHILD METRIC

The Schwarzschild solution is the unique spherically-symmetric solution to the Einstein equation in vacuum. The
vacuum part means that it is a solution to

Rµν = 0. (1)

This means that the solution we are looking for will be valid only outside a spherically-symmetric massive body. The
metric takes this form

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2)

[Radial distance] As should be pretty clear from the form of the above metric, the radial coordinate r doesn’t
correspond to the distance between the origin and some spacetime event. Indeed, moving along a radial line (dφ =
dθ = dt = 0) the distance between two events A and B is

dAB =

∫ rB

rA

dr√
1− 2GM/r

> rB − rA (3)

[See box 9.1.] To compute the result exactly, we make the change of variable u = 2GM/r, which implies that

du = −2GM

r2
dr ⇒ dr = − r2

2GM
du = − (2GM)2

2GMu2
du = −2GM

u2
du. (4)

We thus have

∆s = −2GM

∫ uB

uA

du

u2
√

1− u

= −2GM

(
−
√

1− u
u

− tanh−1
√

1− u
)uB

uA

=

(
r

√
1− 2GM

r
+ 2GM tanh−1

√
1− 2GM

r

)rB
rA

. (5)

Now, we want to compute the physical distance between two shells with r = 3GM (or u = 2/3) and r = 10GM (or
u = 1/5), so

∆s = 2GM

(√
1− u
u

+ tanh−1
√

1− u
)1/5

2/3

≈ 8.78GM > 7GM. (6)

In particular, for r close to rs = 2GM , that distance can get very large. This is an indication of strong spacetime
curvature. Such strong curvature only occurs near ultra-compact massive objects like neutron stars and black holes.
How compact you say? For the mass of the Earth (∼ 6× 1024 kg), rs = 8.8 mm. That is, to generate large curvature,
you would need to compact the mass of the whole Earth into a radius of less than 1 cm. This seems crazy, but this is
more or less what happens around neutrons stars, where rs ∼ 2.2 km and their actual size is only a factor of a few larger.

[Time dilation near massive object] As r → rs, the rate at which a clock ticks is considerably slower. A clock at
rest at a given coordinate radius r will measure a time

∆τ =

∫ √
−ds2 =

√
1− 2GM

r
∆t (7)
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We see that the time measured by the clock will agree with the coordinate time interval only when r → ∞. So, the
meaning of the coordinate time variable t is the time measured by a clock at r →∞. The equation given above implies
that someone spending some time near a black hole will age slower than an observer at infinity. For example, if an
observer spends some time at r = 3GM near a black hole, her clock will measure

∆τ =

√
1− 2

3
∆t =

√
1

3
∆t ≈ 0.58∆t (8)

For instance, if the observer at infinity measure the black hole explorer to be gone near the black hole for one year,
the latter will only have aged ∼ 7 months in the mean time.

[Gravitational redshift] A final point, light redshift as it tries to escape the Schwarzschild spacetime

λR
λE

=

√
1− 2GM/rR
1− 2GM/rE

(9)

where rE is the coordinate where the light is emitted, and rR is the coordinate where the light is received. For
rR > rE , the light is shifted towards longer wavelength. See box 9.4 for connection to Equivalence Principle.

II. REISSNER-NORDSTRÖM SOLUTION

The Schwarzschild solution describes the metric around a spherically-symmetric mass concentration. This solution
is unique. There is a closely related solution in which the mass concentration can also carries an electric charge. This
leads to the Reissner-Nordström solution, another exact solution to Einstein’s equation. Since there is a static electric
field surrounding the charge, we are no longer looking for a vacuum solution to the Einstein equation, but rather one
for which the stress-energy tensor is dominated by that of an electric field. We saw in a past homework assignment
that stress-energy tensor for electromagnetism is

Tµν = −1

4
gµνF

αβFαβ + gαγFµαFνγ . (10)

Note that the trace of this is zero

T = gµνTµν

= gµν
(
−1

4
gµνF

αβFαβ + gαγFµαFνγ

)
= −1

4
gµνgµνF

αβFαβ + gµνgαγFµαFνγ

= −1

4
δµµF

αβFαβ + F νγFνγ

= −FαβFαβ + F νγFνγ

= 0. (11)

So, we are looking for a solution to the equation

Rµν = 8πGTµν , (12)

since T is zero. Now, which components of Fµν are nonzero? By symmetry (and using our intuition about point
charges), we know that the electric field from the central mass density has to be purely radial. Using the same
coordinates as in the Schwarzschild case (t, r, θ, φ), this means that

Fµν =

 0 −E(r) 0 0
E(r) 0 0 0

0 0 0 0
0 0 0 0

 . (13)

Now the stress-energy tensor above also involved Fµν (upper indices) which requires the metric to write down. We
take the trial metric to be the same form as in the Schwarzschild case

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2) (14)
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Then

Fµν = gµαgνβFαβ = gµtgνrFtr (15)

F tr = gttgrrFtr = − 1

A

1

B
(−E(r)) =

E(r)

AB
= −F rt (16)

We are now ready to compute the right-hand side of the Einstein equation

Trr = −1

4
grrF

αβFαβ + gαγFrαFrγ

= −1

4
B(F trFtr + F rtFrt + gttFrtFrt

= −1

4
B(−E

2(r)

AB
− E2(r)

AB
)− 1

A
E2(r)

= −E
2(r)

2A
. (17)

Similarly, we get (see homework)

Ttt =
E2(r)

2B
, Tθθ =

r2E2(r)

2AB
(18)

Comparing the rr and tt equations above, it is clear that

8πG(ATrr +BTtt) = ARrr +BRtt = 0, (19)

which immediately implies (A 6= 0), that

B

A
Rtt +Rrr =

1

r

(
1

A

dA

dr
+

1

B

dB

dr

)
= 0 (20)

where we used Eq. (23.7) in Moore. Thus

1

A

dA

dr
+

1

B

dB

dr
=

1

AB

d

dr
(AB) = 0, (21)

which implies that AB is constant. Now, since we demand that spacetime becomes flat at infinity, we need both A
and B to go 1 as r →∞, which gives

AB = 1, ⇒ B = 1/A. (22)

Now the θθ component of the Einstein equation gives (see homework)

−r dA
dr

+ 1−A = −d(rA)

dr
+ 1 = 8πG

(
r2E2(r)

2

)
(23)

We need an extra equation to solve for E(r). It is advantageous to use Maxwell’s equation in curved spacetime and
in the absence of charged particles, ∇νFµν = 0. Taking the t component of this equation yields

∇νF tν = ∂νF
tν + ΓνναF

tα

= ∂rF
tr + ΓννrF

tr

= ∂rE(r) + (Γttr + Γrrr + Γθθr + Γφφr)E(r)

= ∂rE(r) + (
1

2A

dA

dr
− 1

2A

dA

dr
+

1

r
+

1

r
)E(r)

=
dE

dr
+

2

r
E(r) =

1

r2
d

dr

(
r2E(r)

)
= 0, (24)
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where we used the fact that E is only a function of the coordinate r to convert the partial to a total derivative, and
the Christoffels can be found in Moore (or really, in any GR textbook). Maxwell’s equation thus implies

r2E = constant. (25)

To find the constant, we note that as r → ∞ we would like the solution to reduces to that of electromagnetism
in flat spacetime, which implies that the constant is Q/(4π) (remember that c = 1 here, which automatically sets
ε0 = µ0 = 1, and results in the electric charge being dimensionless in these units). Thus,

E(r) =
Q

4πr2
. (26)

We can then substitute this solution into the equation for A(r) above, which yields

d(rA)

dr
= 1− 4πGr2

(
Q

4πr2

)2

= 1− GQ2

4πr2
. (27)

Integrating on both sides give

rA = r +
GQ2

4πr
+ C

A(r) = 1 +
GQ2

4πr2
+
C

r
, (28)

where C is a constant of integration. Now this solution must reduces to the Schwarzschild solution in the limit that
Q → 0, which means that C = −2GM . Thus, the Reissner-Nordström solution to the Einstein equation takes the
form

ds2 = −
(

1− 2GM

r
+
GQ2

4πr2

)
dt2 +

(
1− 2GM

r
+
GQ2

4πr2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (29)

This metric has an interesting horizon structure (see homework). This metric implies that black holes cannot have
an arbitrary large charge, i.e. Q2 ≤ 4πGM2.


