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I. U(l) GAUGE THEORY

[What is U(1)?] You may have heard that electromagnetism is a U(1) gauge theory. Here, U(1) refers to the unitary
group of dimension 1, which simply acts on objects by multiplying them by a complex phase e?. Because of this, U(1)
is often referred to as the “circle” group since 6 can be used to denote a position on the unit circle. Electromagnetism
is a theory in which important objects are invariant under such U (1) phase rotation.

[A phase factor everywhere in spacetime| Imagine that at every point in spacetime, we associate a complex
phase factor parametrized by 0(x) (here = denotes spacetime coordinates). This is in complete analogy to associating
a tangent vector space to every points in spacetime. As a simple starting point, let set 8(x) = 0 everywhere. Since
the phase is the same everywhere, this spacetime is equivalent to standard Minkowski space and I don’t have to worry
about this phase at every spacetime points. I am free to define functions on this spacetime, such as 9,(z), (here, ¢ is
a label and not an index, see below) and take their derivatives 0,,1q.

[A spacetime-dependent phase] Now imagine that I perform a transformation that sets the phase everywhere to be
¢"@®) where (x) is a smooth non-constant function. The complex phase is now different (though smoothly varying)
at every spacetime point. You can think of this transformation as effectively doing a coordinate transformation on
the imaginary little circle existing at every point in spacetime. Under this transformation, the function v4(x) picks
an extra phase

(@) = Yy (2) = €7Dy (2), (1)

where g can be thought of as a “response function” for how much the function ,(x) react to a change in 6(z). As we
will see, ¢ turns out to be what we call the electric charge. In particular, functions 1, (z) with ¢ = 0 are insensitive
to the change of phase.

[Invariance under U(1) transformations] The theory of electromagnetism is developed by demanding that any
physical observables are independent of the choice of phase given in Eq. (1). This is non-trivial, as the presence of
the non-vanishing phase factor makes computing derivatives of functions complicated. For instance,

Outpy(2) = D0,y () + iqe' ™Dy (2)9,0(2), (2)

where the second term is caused by the spatial dependence of the phase 6(x). If we are demanding that our theory be
insensitive to the choice of phase, this term cannot be present when we compute derivatives. The problem with the
above is that our differential operator 0, is unaware that nearby points have different phases. We need a differential
operator that is aware of this difference.

[Gauge-covariant derivative] Counsider the following differential operator
D, =0,+1iq4A,, (3)

where A,, is a one-form (dual vector) that effectively encodes the difference in U(1) phase between nearby spacetime
points. In the above starting point where the phase was vanishing everywhere, we obviously have A, = 0. However,
once we make the phase transformation given in Eq. (1), we have

Dypy(x) = eiqe(x)aqu(m) + iqeiqe(x)wq(x)Au + iqeiqe(x)¢q(m)au9($)- (4)
If we choose A, = —0,6(x), we can cancel the two last terms and obtain
Du¢;($) = eiqe(x)Dqu($)~ (5)

Since phase factor can never affect real observables, the above condition is sufficient to claim that the theory is
independent of the choice of phase.



[Gauge connection or potential] As you can see from the above, the role of the one-form A, is to connect values
of 6(x) at nearby points, that is, for e# <« 1

0z +€)  0(z) + " 0,8], = 0(x) — * Ay (). (6)

Because of this, A, is often referred to as a connection in the mathematics literature, although physicists usually
referred to it as the gauge potential or gauge field.

[General gauge transformation] In the above example, we started with a configuration with 6(z) = 0 everywhere
(implying A, (z) = 0), and then applied the phase transformation given in Eq. (1). But nothing stops us from starting
from a phase configuration with 6(z) # 0 (and thus a non-vanishing gauge field A,(z)), and make a further phase
transformation (usually referred to as a “gauge transformation”) with ¢'(z) and related gauge field A (z). Under
such change, the function ,(z) and A, (z) transform as

(@) = v (x) = 17 @y (), (7)

Au(2) = A (@) = Au(2) — 0,0 (). (8)
It is easy to see that such transform leaves the gauge covariant derivative of 1, invariant (up to a phase)

Dyl (x) = (9, + ig A} )’ Py ()
= (8 +iq(A, — 8,0 (1))’ @y, (x)
= €@ (9,0, + iqA, g — 1q(0,0' )1y + iqe(9,6"))
= ¢'17'() (Outhq +iqAutq)
= eiqel(“")Dqu. (9)
[Gauge field dynamics: Curvature| The gauge field A, (z) is a dynamical function of spacetime and its equation

of motion will thus involve derivatives. The problem though is that terms like 9, A, are not invariant under the gauge
transformation given in Eq. (8). However, the combination

F,, =0,A, - 0,A,, (10)

is invariant under that gauge transformation since partial derivatives commute. F},, is an anti-symmetric (0, 2) tensor
(i.e. a two-form). A more formal definition of F),, can be obtained by considering the commutator of two gauge
covariant derivatives and how it acts on a function ().

[Dm Du]% = inuﬂ/’m (11)

Now the above commutator says that if I first study the variation of 1, in the v and then in the y direction, or if I
first study the variation of v, in the p direction and then in the v direction, I get a nonzero result only if F),, # 0.
Thus, F),, tells us about the curvature of the internal space described by 6(z). The label ¢ is interpreted as the
electric charge carried by v,.



