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I. NOTION OF CURVATURE

[ Parallel transport] Last time we discussed parallel transporting tensor along specific trajectories in spacetime.
As a reminder, a tensor T is said to be parallel transported along the curve xµ(τ) if

dxλ

dτ
∇λTµ1...µk

ν1...νl
= 0. (1)

[ Parallel transport is path dependent] Now the key point about parallel transport is that, in general, it is path
dependent. This path dependence is intrinsically linked to the notion of spacetime curvature. For instance, let’s say I
want to parallel transport a vector V from spacetime point A to spacetime point B. If I choose path 1 parametrized
by the curve xµ1 (τ), I get the vector V1. On the other hand, if I choose path 2 parametrized by the curve xµ2 (τ), I get
the vector V2. If V1 6= V2, then spacetime is said to be curved.

[ Example on a sphere] A two-dimensional example of this is shown in Fig. 1, where we parallel transport a vector
from the equator to the pole of a 2-sphere. On path 1, we simply move the vector directly from the equator to the
pole. On path 2, we first transport the vector along the equator, and then move it up to the pole. The resulting
vectors at the pole from choosing path 1 and path 2 are clearly different. This matches our intuitive notion that the
surface of a sphere is curved.

FIG. 1. Parallel transport of a vector from the equator to the pole of a 2-sphere along two different paths. Figure taken from
Carroll (2003).

[ Curvature as a commutator] Moving vectors over different paths as shown in Fig. 1 provides an illustrative
example of the curvature of space. However, we would like to have a local definition of curvature that doesn’t depend
on two faraway points A and B. Instead, consider moving the vector V on two infinitesimal paths. For the first path,
first move the vector from position xµ to xµ + εµ, and then move it to position xµ + εµ + φµ, where εµ and φµ are
infinitesimal constant vectors. For the second path, first move the vector from position xµ to xµ +φµ, and then move
it to position xµ +φµ + εµ. Let’s work through this slowly. For a vector translated from xµ to xµ + γµ (where γµ can
be either εµ or φµ), we have

V σ(xµ + γµ) ≈ V σ(xµ) + γν∇νV σ(xµ) +
1

2
γν∇νγα∇αV σ(xµ) + . . . , (2)
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where we have kept terms up to second order in the small vector γµ. This is basically a Taylor expansion in curved
space. Applying this expression recursively to xµ → xµ + εµ → xµ + εµ + φµ along path 1, we get

V σ1 (xµ+εµ+φµ) = V σ(xµ)+εν∇νV σ(xµ)+
1

2
(εν∇νεα∇α + φν∇νφα∇α)V σ(xµ)+φν∇ν [V σ(xµ) + εµ∇µV σ(xµ)] , (3)

where we have kept terms up to second order in the small vectors εµ and φµ. Along path 2, we move the vector along
xµ → xµ + φµ → xµ + φµ + εµ and we get

V σ2 (xµ + φµ + εµ) = V σ(xµ) + φν∇νV σ(xµ) +
1

2
(φν∇νφα∇α + εν∇νεα∇α)V σ(xµ) + εµ∇µ [V σ(xµ) + φν∇νV σ(xµ)] .

(4)
The difference between these two operations is

V σ2 (xµ + φµ + εµ)− V σ1 (xµ + εµ + φµ) = εµφν (∇µ∇ν −∇ν∇µ)V σ = εµφν [∇µ,∇ν ]V σ (5)

that is, the commutator of two covariant derivatives. Let’s expand this commutator

[∇µ,∇ν ]V ρ = ∇µ∇νV ρ −∇ν∇µV ρ

= ∂µ(∇νV ρ)− Γλµν∇λV ρ + Γρµσ∇νV σ − (µ↔ ν)

= RρσµνV
σ, (6)

where you will fill the intermediate steps in the homework. The equation above can be taken as a definition of the
Riemann curvature tensor Rρσµν , for spacetime without torsion, that is, those for which Γαµν = Γανµ. If any component
of this tensor is nonzero, than spacetime is said to be curved.

[ Relation to Christoffel connection ] As you will show in the homework, the Riemann tensor can be written in
terms of the Christoffel connection as

Rαβµν = ∂µΓαβν − ∂νΓαβµ + ΓαµγΓγβν − ΓανσΓσβµ. (7)

Since the connection coefficients depend on the first derivative of the metric, then the Riemann tensor depends on
the second derivatives of the metric, as well as product of first derivatives of the metric. Note that the product of
Christoffel connections in the Riemann tensor means it is nonlinear in the metric. As a consequence, GR is a nonlinear
theory, which is one of the reason why it is so difficult to find solutions to Einstein’s equation. From its definition in
terms of the commutator in Eq. (6), it’s clear that Riemann tensor is antisymmetric in its two last indices

Rαβµν = −Rαβνµ. (8)

We will discuss other symmetries of the Riemann tensor next time.

[ What is flat spacetime? ] If the Riemann tensor vanishes, we know that our spacetime is flat. Since flat spacetime
can always be described by the Minkowski metric, which has constant components, we can make the following two
statements:

1. If there is a coordinate system in which the components of the metric are constant, than the Riemann tensor
vanishes

2. If the Riemann tensor vanishes, we can always construct a coordinate system in which the components of the
metric are constant.


