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I. LINKING SPACETIME CURVATURE TO ITS ENERGY CONTENT

Last time, we saw how to pack the matter/energy content of a spacetime into a tensorial object, the symmetric
stress-energy tensor Tµν . We are now ready to see how this matter/energy in turns causes the spacetime to curve.
From our discussion of the Riemann and Ricci tensors, we know that the curvature of a given spacetime with metric
gµν depends on the second-derivative of the metric. So, very schematically, we are looking for an equation of the form

[∇2g]µν ∝ Tµν . (1)

This is of course not a valid tensor equation, but rather a suggestion for what we are looking for. Further guidance
is provided by demanding that the above schematic equation reduces to the Poisson equation for the Newtonian
gravitational potential in the nonrelativistic limit

∇2Φ = 4πGρ, (2)

where G is Newton’s gravitational constant and ρ is the mass density here. So, we are looking for a proper tensorial
equation linking the second derivative of the metric to the stress-energy tensor. Let’s write this equation as

Gµν = κTµν (3)

where Gµν is a symmetric rank 2 tensor depending the the second derivative of the metric and κ is a constant to
be determined. Fortunately, we already know a rank 2 tensor depending on the second derivative of the metric: the
Ricci tensor Rµν . However, since ∇µTµν = 0, we must also have ∇µRµν = 0, which is unfortunately not true. You
can show that in fact,

∇µRµν =
1

2
∇νR, (4)

which is nonvanishing in general. Here, R is the Ricci scalar. However, the above equation shows that if we were to
define

Gµν ≡ Rµν −
1

2
Rgµν , (5)

then we immediately have ∇µGµν = 0. The tensor Gµν defined above, referred to as the Einstein tensor, is the
only rank 2 symmetric tensor you can build out of the Riemann tensor that is linear in the second derivatives of the
metric, does not contain higher derivatives of the metric, is zero in flat spacetime, and is invariant under coordinate
transformations. Up to the constant κ, the Einstein equation takes the form

Rµν −
1

2
Rgµν = κTµν (6)

The constant κ can be determined by taking the nonrelativistic limit of the Einstein equation and making sure it
reduces to Eq. (2) above. This gives κ = 8πG. We thus get

Rµν −
1

2
Rgµν = 8πGTµν . (7)

This equation is sometime written in a slightly different form [Box 21.3]. Contracting both sides with the inverse
metric gµν , we get

R− 1

2
Rδµµ = −R = 8πGT, (8)

where T = gµνTµν is the trace of the stress-energy tensor. Substituting this in Eq. (7), we get

Rµν = 8πG(Tµν −
1

2
Tgµν). (9)

In vacuum where Tµν = 0, this reduces to Rµν = 0, a rather simple form of Einstein equation.
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II. THE COSMOLOGICAL CONSTANT

Since ∇µgµν = 0 always, we are always free to add a term proportional to the metric to either side of the Einstein
equation. If we add it to the left-hand side, this is usually referred to as the cosmological constant term

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (10)

Here, Λ is a constant. Historically, Einstein added this term (with a negative sign) to ensure the Universe as a whole
was static. Of course, nowadays we know the Universe is not static and is in fact expanding at an accelerating rate.
This acceleration means that Λ (or something like it) is required to be there, albeit with the opposite sign of what
Einstein had in mind. In this case, we usually add the Λ term on the right-hand side of the equation such that it
contributes to Tµν with

−ρvacgµν , (11)

where

ρvac =
Λ

8πG
, (12)

is usually referred to as the vacuum energy. For our purpose, the term “cosmological constant” and “vacuum energy”
can be used interchangeably.

III. WEAK-FIELD, NONRELATIVISTIC NEWTONIAN LIMIT

Above, we have taken the constant κ = 8πG. Let’s see how this arises by taking the Newtonian limit of Eq. (9).
The Newtonian limit is defined by three requirements: the particles are moving slowly compared to the speed of light,
the gravitational field is weak (small perturbation around flat space), and the field is constant in time. The second
point allows us to write the metric as

gµν = ηµν + hµν (13)

where hµν is small, in the sense that we can ignore terms that are quadratic (or higher order) in hµν . The inverse
metric is

gµν = ηµν − hµν , (14)

where

hµν = ηµρηνσhρσ. (15)

Since only particles moving close to the speed of light have significant pressure, then the stress-energy tensor in this
case is

Tµν = ρuµuν . (16)

Here, ρ could be the mass density of a star or Earth. In the rest frame of this object, the four-velocity is simply
uµ = (1, 0, 0, 0), which implies that

u0 = g0µu
µ = g00u

0 = (η00 + h00)u0 ' η00 = −1, (17)

where we have used the fact that u0 will multiply ρ which is already small (since spacetime is close to flat). Thus

T00 = ρ (18)

is the dominant component of the stress-energy tensor. The trace of the stress-energy tensor is then

T = gµνTµν = η00T00 = −T00 = −ρ. (19)

The 00 component of Eq. (9) is then

R00 = κ(T00 −
1

2
Tg00) = κ(ρ− 1

2
(−ρ)(−1)) =

1

2
κρ. (20)
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Now, what is R00? We have

R00 = Rλ0λ0 = Ri0i0. (21)

Using the definition of the Riemann tensor we have

Ri0j0 = ∂jΓ
i
00 − ∂0Γij0 + ΓijλΓλ00 − Γi0λΓλj0. (22)

Since we have static field, the second term vanishes. The third and fourth terms are of the form (Γ)2 and since the
Christoffels are first order in the derivative of hµν then these terms will be second order. Only the first term survives.

R00 = ∂iΓ
i
00

= ∂i

[
1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

]
= −1

2
δij∂i∂jh00

= −1

2
∇2h00. (23)

So, we get

∇2h00 = −κρ. (24)

The final step is to relate h00 to the Newtonian gravitational potential Φ. From Newton’s second law (~F = m~a), the
motion of a particle in a gravitational field is

d2~x

dt2
= −~∇Φ, (25)

or in components

d2xi

dt2
= −∂iΦ. (26)

But the equation of motion of the particle should also be given by the gedoesic equation

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)2

= 0, (27)

where we used the fact that the particle moves slowly, which implies

dxi

dτ
� dt

dτ
, (28)

to neglect terms proportional to dxi/dτ . From above, we already know that

Γµ00 = −1

2
ηµλ∂λh00. (29)

Taking the i component of the geodesic equation,

d2xi

dτ2
− 1

2
∂ih00

(
dt

dτ

)2

= 0. (30)

Now, dividing both sides by (dt/dτ)2, which converts the τ derivatives to t derivatives, we obtain

d2xi

dt2
=

1

2
∂ih00. (31)

Comparing to the above, we see that h00 = −2Φ. Equation (24) above thus takes the form

∇2Φ =
1

2
κρ, (32)

which if we compare to Eq. (2) above, implies that κ = 8πG.


