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I. COORDINATE INVARIANCE AND ENERGY-MOMENTUM CONSERVATION

The Einstein equation

Gµν = 8πGTµν or Rµν = 8πG(Tµν −
1

2
Tgµν) (1)

represents 10 equations in 4 spacetime dimensions since both sides are symmetric tensors. Now, the metric gµν is
also a symmetric tensor in four dimensions, which should thus have 10 independent components. So, the Einstein
equation should be able to entirely determine the metric tensor.

[Actual number of degree of freedom] However, we know that, given a metric describing some spacetime, we can
perform a coordinate transformation xµ → x′µ and get a perfectly fine metric describing the same spacetime. This
means that the Einstein equation can only determine six constraints on the metric gµν . How can the 10 components of
the Einstein equation only provide 6 constraints on gµν? Because the Einstein tensor satisfies the constraint equation
∇µGµν = 0, which represents 4 equations, and 10− 4 = 6 net equations.

[Symmetry and energy-momentum conservation] Last time we demanded that ∇µGµν = 0 in order to have
∇µTµν = 0, but note that we don’t need to invoke this fact here. Once you define the Einstein tensor as

Gµν ≡ Rµν −
1

2
Rgµν , (2)

then ∇µGµν = 0 is guaranteed by the Bianchi identity

∇σRαβµν +∇νRαβσµ +∇µRαβνσ = 0 (3)

(see box 21.2 in Moore). Thus, we can turn the problem around and argue that coordinate invariance implies
that ∇µGµν = 0, which in turns enforces energy-momentum conservation ∇µTµν = 0. This is the point of view
adopted by most modern practitioners of GR: the fact that Einstein equation is invariant under a general coordinate
transformation (diffeomorphism) implies that energy-momentum is (covariantly) conserved. This can be view as an
application of Noether’s theorem in which the symmetries of the equation of motion lead to conserved quantities.

II. COMMENTS ON THE EINSTEIN EQUATION

[Nonlinear nature of the Einstein Equation] As mentioned above, the Einstein equation represents six indepen-
dent equations (in four dimensions) for the components of the metric gµν . These equations are differential equations
involving first and second derivatives of the metric as well as the inverse metric. Since the Riemann tensor contains
products of Christoffel connections, these equations involve products of metric components and their derivatives,
which makes the equations nonlinear.

[No principle of superposition ] This means that we cannot use the principle of superposition to form new
solutions to Einstein’s equations from known ones. In addition, the energy-momentum tensor itself depends on the
metric tensor (see the perfect fluid case, for example), implying that the metric appears on both sides of the equation.
Thus solving the Einstein in all generality is impossible. Finding solutions requires us to assume some symmetries
the simplify the equation.

[Gravity couples to itself] It is worth discussing the nonlinear nature of Einstein’s equation. In Newtonian gravity,
if you bring two massive objects nearby, you can simply add together their respective gravitational potential to find
the resulting total potential (and thus, the resulting gravitational acceleration) from these two masses. It doesn’t
work that way in GR: the gravitational field from an object depends on whether other massive objects are nearby.
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Basically, in GR the nonlinear nature of the Einstein equation implies that the gravitational field couples to itself,
that is, a gravitational field itself can generate a gravitational field!

[Relation to Equivalence Principle] This can be thought as a consequence of the Equivalence Principle: if
gravitational “energy” did not itself gravitate, then a gravitationally-bound system would have a different inertial
mass than gravitational mass. The nonlinear nature of the Einstein equation ensures that the Equivalence Principle
is always respected, and it does represent a departure from Newtonian theory. Since the nonlinear behavior becomes
more apparent in stronger gravitational fields, you need to go close to massive objects to begin seeing the difference
between Newtonian gravity and GR. This is why the orbit of Mercury is most influenced by GR corrections compared
to the other planets.

III. WEAK-FIELD, NONRELATIVISTIC NEWTONIAN LIMIT

A. Einstein Equation in the weak-field limit

In the weak-field limit, the Riemann tensor takes the simple form

Rαβµν =
1

2
(∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ) (4)

(see Moore box 22.3) and the Ricci tensor is

Rβν =
1

2
(−ηαµ∂α∂µhβν + ∂βHν + ∂νHβ) , (5)

where

Hν = ηµα
(
∂µhαν −

1

2
∂νhαµ

)
. (6)

(see box 22.4). Now, we can use our coordinate freedom to send

xµ → xµ + ξµ, (7)

which sends

hµν → hµν + ∂µξν + ∂νξµ. (8)

(see Moore Chap. 30, which we will cover later). This is very similar to a gauge transformation in electromagnetism.
We can always choose ξµ to set Hν to zero (4 transformations to set the 4 components of Hν to zero). In this case,
the Einstein equation reduces to

−1

2
ηαµ∂α∂µhβν = −1

2
�2hβν = 8πG

(
Tβν −

1

2
ηβνT

)
, (9)

which is valid for a weak gravitational field. For a static source (independent of time), this reduces to

∇2hβν = −16πG

(
Tβν −

1

2
ηβνT

)
, (10)

which is just the Poisson equation. The formal solution to this equation is

hβν(~r) = 2

∫
d3rs

G(2Tβν − ηβνT )

|~r − ~rs|
, (11)

where the integral runs over where the stress-energy tensor has support (i.e. where the matter/energy is). The source
term appearing in this equation is always simple in the non-relativistic limit. Starting from the perfect fluid stress-
energy tensor Tµν = (ρ + p)uµuν + gµνp, its trace is always T = gµνTµν = −ρ + 3p. Assuming that the “fluid” is
moving slowly, that is ut ∼ 1 and ui � 1, the source terms are

2Ttt − ηttT ≈ ρ+ 3p, (12)

2Tti − ηtiT = 2Tti ≈ −2(ρ+ p)ui, (13)

2Tii − ηiiT ≈ ρ− p, (14)

2Tij − ηijT ≈ 0, (i 6= j). (15)
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B. Geodesic equation in weak-field limit

Let’s assume a particle is moving non-relativistically in a weak gravitational field. It’s four-velocity is approximately
given by uµ ≈ (1, vx, vy, vz), where vi � 1 are the standard components of the three-velocity. The spatial components
of the geodesic equation are then

d2xi

dτ2
+ Γitt(u

t)2 + Γijku
juk + 2Γitju

tuj = 0 (16)

Not the term ujuk is subdominant compared to the other terms since it is second order in the small velocity. Using
ut ∼ 1 and realizing that in this limit a τ derivative is equivalent to a t derivative (i.e. dt/dτ = 1), we have

d2xi

dt2
+ Γitt + 2Γitjv

j ≈ 0 (17)

Last time, we saw that

Γitt = −1

2
δil∂lhtt. (18)

The other Christoffel we need it

Γitj =
1

2
ηil (∂thjl + ∂jhlt − ∂lhtj)

=
1

2
δil (∂jhlt − ∂lhtj) . (19)

The geodesic equation is then

d2xi

dt2
≈ 1

2
δil∂lhtt + δil (∂lhtj − ∂jhlt) vj . (20)

Last time, we identified that htt = −2Φ, the Newtonian gravitational potential. The second term on the right-hand
side has no equivalent in Newtonian mechanics. It is the gravitomagnetic term since this terms is only present if the
particle is moving (like a magnetic force). It is convenient to define

Flj ≡ ∂lhtj − ∂jhlt, (21)

which allows us to write down

d2xi

dt2
≈ δil(−∂lΦ + Fljv

j). (22)

C. Example with a moving thin solid rod

Let’s take a very long thin solid rod of mass density λ (per unit length) extending along the z-axis (we can neglect the
pressure of the rod). The rod is moving in the z direction with a small coordinate speed V � 1, making it essentially
a static source. We would like to compute the equation of motion for a non-relativistic particle propagating near this
rod. We thus need to compute ∂lhtt and ∂lhtj . From the formal solution to the Poisson equation above, we have

htt = 2

∫
d3rs

G(2Ttt − ηttT )

|~r − ~rs|
(23)

It is easiest to do the integral in cylindrical coordinates. In this case, |~r− ~rs| =
√
r2 + z2, and 2Ttt − ηttT = λδ(2)(~r).

We thus get

htt(r) = 2Gλ

∫ ∞
∞

dz
1√

r2 + z2
. (24)

Similarly,

htz(r) = −4GλV

∫ ∞
∞

dz
1√

r2 + z2
= −2V htt(r), (25)
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with htx = hty = 0. Now the integrals we have above are technically infinite, but this is ok as what we want is the
spatial derivative of these integrals. In particular,

∂rhtt = 2Gλ

∫ ∞
∞

dz∂r

(
1√

r2 + z2

)
= −2Gλ

∫ ∞
∞

dz
r

(r2 + z2)3/2

= −2Gλr

(
z

r2
√
r2 + z2

)∞
−∞

= −2Gλr

(
1

r2
− −1

r2

)
= −4Gλ

r
. (26)

Similarly, we get

∂rhtz(r) =
8GλV

r
(27)

Remembering that ∂xr = x/r, ∂yr = y/r, and ∂zr = 0 in cylindrical, we thus have

d2x

dt2
=

1

2
∂xhtt + (∂xhtj − ∂jhxt) vj

=
1

2
∂rhtt∂xr + vz∂rhtz∂xr

= −2Gλx

r2
+

8GλV vzx

r2
. (28)

Similarly

d2y

dt2
= −2Gλy

r2
+

8GλV vzy

r2
. (29)

Finally

d2z

dt2
=

1

2
∂xhtt + (∂zhtj − ∂jhzt) vj

= −∂xhztvx − ∂yhztvy

= −vx∂rhzt∂xr − vy∂rhzt∂yr

= −8GλV

r2
(xvx + yvy) . (30)

We note that this is very similar to the Lorentz force law for electromagnetism. In fact, we can write the above as

d2~x

dt2
= ~EG + ~v × 4 ~BG, (31)

with

~EG = −2Gλ

r
r̂, ~BG = −2Gλ

r
(~V × r̂). (32)

Up to the factor of 4 for the “magnetic” term, compare this from the electric and magnetic field of a moving line
charge,

~E =
2λ

4πε0r
r̂, ~B =

2λ

4πµ0r
(~V × r̂). (33)

This is why the contribution from Eq. (21) above is often referred to as the gravitomagnetic term.


