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I. PERTURBATION AROUND NEARLY FLAT SPACETIME

Here, we would like understand gravity in the weak regime where spacetime is nearly flat. We’ve explored this
a little bit before when taking the Newtonian limit in order to link the 00 entry of the metric to the Newtonian
gravitational potential from classical mechanics. Here, we would like to go beyond that and consider the full tensorial
structure of the metric in the weak-field limit. Let’s consider a spacetime that is nearly flat up to a small perturbation
hµν . The metric can then be written as

gµν = ηµν + hµν , |hµν | � 1, (1)

where ηµν is the Minkowski metric. In this scenario, the inverse metric is given by

gµν = ηµν − hµν , (2)

where

hµν = ηµαηνβhαβ . (3)

The above expressions are derived assuming that hµν is a small perturbation, and we can thus keep only terms that
are first order in hµν . With this metric definition, we can compute the Riemann tensor, which to first order in the
metric perturbation takes the form

Rαβµν =
1

2
(∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ) . (4)

Since the Riemann tensor is already first order in hµν , the Ricci tensor and scalar are simply given by

Rγσ = ηγβησνηαµRαβµν , (5)

R = ηαµηβνRαβµν . (6)

Then, the Einstein equation takes the form

Gγσ = 8πGT γσ

Rγσ − 1

2
ηγσR = 8πGT γσ

1

2

(
∂γ∂µh

µσ + ∂σ∂µh
µγ − ∂γ∂σh− ∂µ∂µhγσ − ηγσ∂β∂µhµβ + ηγσ∂µ∂µh

)
= 8πGT γσ, (7)

where h = ηµνhµν . Moore introduces the “trace-reversed” metric perturbations

Hµν ≡ hµν −
1

2
ηµνh. (8)

This is called “traced-reversed” because

H = ηµνHµν

= ηµν
(
hµν −

1

2
ηµνh

)
= h− 1

2
ηµνηµνh

= h− 1

2
4h

= −h. (9)

In terms of Hµν , the Einstein equation simplifies a bit (see Box 30.3)

�2Hγσ − ∂γ∂µHµσ − ∂σ∂µHµγ + ηγσ∂β∂µH
µβ = −16πGT γσ, (10)

where �2 ≡ ηαβ∂α∂β (note that what Moore denotes as �2 is simply denoted as � in a lot of other references).
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II. GAUGE TRANSFORMATION

The metric perturbation hµν (or Hµν) is a symmetric rank-2 tensor, and thus has 10 independent entries. However,
we area always free to make a coordinate transformation x′µ = xµ + ξµ to set 4 of these entries to zero. Here,
ξµ = ξµ(t, x, y, z) is a function of spacetime coordinates, and we will assume without loss of generality that this
coordinate transformation is infinitesimal, |ξµ| � 1. As we have seen many times, the metric transforms as follows
under such coordinate transformation

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (11)

For the coordinate transformation given above, the partial derivatives read

∂xα

∂x′µ
=

∂

∂x′µ
(x′α − ξα)

= δαµ −
∂ξα

∂x′µ

= δαµ −
∂ξα

∂xβ
∂xβ

∂x′µ

≈ δαµ − ∂βξαδβµ
= δαµ − ∂µξα, (12)

where we have neglected terms that are second order in ξµ in going from third to the fourth line. Using this
transformation, we can show (Box 30.4) that the metric perturbation hµν transforms as follows

h′µν = hµν − ∂µξν − ∂νξµ, (13)

while the trace-reversed perturbation transforms as

H ′
µν = Hµν − ∂µξν − ∂νξµ + ηµν∂αξ

α. (14)

It can be shown that the Riemann tensor (and thus the Einstein equation) is invariant under such
coordinate transformations. Thus, the underlying physics is not affected by our specific choice of
coordinates (at it should!). In terms of terminology, a choice of infinitesimal vector ξµ is said to specify a
gauge, in analogy to electromagnetism, where we are always free to define a new vector potential Aµ via the gauge
transformation A′

µ = Aµ − ∂µλ without changing the physics.
A useful gauge is the Lorenz gauge, which is defined by ∂µH

′µν = 0, which simplifies the equation of motion to

�2Hµν = −16πGTµν , (15)

which is just the wave equation.

III. IDENTIFYING PHYSICAL DEGREES OF FREEDOM

The fact that we are always free to make a gauge (coordinate) transformation of the metric without changing
the underlying physics means that 4 of the 10 independent entries of the metric are unphysical “gauge” degrees of
freedom that need to be eliminated before we can ask meaningful physical questions (such as the distance between
two spacetime events). Identifying the physical degrees of freedom within the metric and eliminating the “gauge”
modes is a complex issues that has caused endless confusion in the literature from the onset of General Relativity in
the early twentieth century all the way to the 1980s. Let’s work here through a general example of how one can make
a choice of gauge to eliminate the the unphysical “gauge” degrees of freedom. To do so, we start by parameterizing
our metric perturbation as follows:

h00 = −2Φ (16)

h0i = wi (17)

hij = 2sij − 2Ψδij (18)
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where Ψ encodes the trace of hij , and sij is traceless

Ψ = −1

6
δijhij (19)

sij =
1

2

(
hij −

1

3
δklhklδij

)
, (20)

and latin indices (e.g., i, j, k, l) represent only spatial components. Here, Φ and Ψ are (Lorentz) scalar functions,
wi are the components of a three-vector, and sij is a symmetric traceless 3-by-3 tensor. Let’s count the number of
independent degrees of freedom (d.o.f.) here: Φ and Ψ are two scalar functions (2 d.o.f.), wi is a vector (3 d.o.f.), and
sij (5 d.o.f.), for a total of 10 d.o.f.

For clarity, the line element in this metric takes the form

ds2 = −(1 + 2Φ)dt2 + wi(dtdx
i + dxidt) + [(1− 2Ψ)δij + 2sij ]dx

idxj . (21)

We know that 4 of those degrees of freedom are unphysical “gauge” modes. In the homework, you will compute
how these different entries transform under a coordinate transformation and specify a gauge to eliminate the four
unphysical degrees of freedom.

IV. SCALAR, VECTOR, AND TENSOR DECOMPOSITION

[Number of physical degrees of freedom in metric] Of course, there are an infinite number of possible gauges
that can be chosen. However, there are some general properties of the metric that will always be true once the gauge
modes have been eliminated: the metric can at most have 2 scalar d.o.f, 2 vector d.o.f, and 2 tensor d.of. Let’s
consider how this works.

Since any three-vector field can always be decomposed as a sum of a curl-free and divergenceless parts, we have

wi = ∂iλ+ εijk∂jζk, (22)

where λ is a scalar function and the vector ζk is divergenceless, ∂kζ
k = 0. So, while we might think that wi represents

3 vector degrees of freedom, it is not the case. The function λ is obviously a scalar degree of freedom, while ζk (subject
to the condition ∂kζ

k = 0) represents two vectors degrees of freedom. Similarly, we can decompose the symmetric
tensor sij as follows

sij = sij⊥ + sijS + sij|| , (23)

where sij⊥ is the transverse part obeying ∂is
ij
⊥ = 0, sijS is the solenoidal part which obeys ∂i∂js

ij
S = 0, and sij|| is the

longitudinal part obeying εjkl∂k∂is
i

|| j = 0. This means that the longitudinal and solenoidal parts can be written as

follows

s||ij =

(
∂i∂j −

1

3
δij∇2

)
Θ, (24)

sSij = ∂ivj + ∂jvi, ∂iv
i = 0. (25)

Here, Θ is a scalar function, while vi is a three-vector. Note that the transverse part sij⊥ cannot be further decomposed.
We are now ready to count our degrees of freedom: we have four scalars (Φ, Ψ, λ, Θ) with one degree of freedom each,
we have two transverse vectors (ζk, vk) with two degrees of freedom each, and have one traceless-transverse tensor

(sij⊥) which contains two degrees of freedom. We therefore have

4 scalars + 4 vectors + 2 tensors = 10 degrees of freedom. (26)

[Scalar and vector nature of gauge transformation] Now, let’s examine the gauge transformation x′µ = xµ+ξµ.
We can write the transformation vector as

ξµ = (ξ0, ξi), (27)



4

where ξ0 is a scalar function, and ξi can be decomposed as

ξi = ∂if + εijk∂
jV k, (28)

where f is a scalar function and V k is a divergenceless vector, ∂kV
k = 0. Thus, the transformation vector ξµ

contains two scalar d.o.f. (ξ0, f) and two vector d.o.f (V k, subject to ∂kV
k = 0). This means that such coordinate

transformations can be used to eliminate two of the scalar degrees of freedom, and two of the vector degrees of freedom.
This indeed means that the physical metric will indeed have 2 scalar, 2 vector, and 2 tensor degrees of freedom.


