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I. THE GEODESIC EQUATION

[Generalizing Newton’s 2nd law] So far, we have discussed spacetimes for which a metric g,,,, allows us to compute
small spacetime interval ds>

ds® = g, datdz”. (1)

Now, we would like to study how test particles move in such spacetimes, that is, if I set a particle at some point p
with three-velocity ¥, what will its trajectory be? In a sense, we are looking for a generalization of Newton’s second
law F' = md, where F here is purely the gravitational force, that is
d*z
dt?
where ® is the Newtonian gravitational potential. Specifically, we are looking for an equation valid in all reference
frames, that is, a tensor equation.

— —Vo(t,7), (2)

[The action for a single particle] As we usually do in physics to find the equation of motion for some process,
we first write down the action. For a freely-falling particle of mass m, the action is simply the particle’s proper time
S=—-mr=—-m f v/—ds?. If you are unimpressed by this, note that this expression reduces to what you are used to
in classical mechanics in the nonrelativistic limit in flat spacetime.

Sz—m/\/ —ds? (3)
:—m/JW
:fm/\/dthdf2

—m/“l— dt dt

%—m/l—fv (v<1)

/( m + 2mUQ)dﬁ (4)

Thus, up to a constant (which happens to be the rest mass of the particle) which can’t affect the equation of motion,
we indeed retrieve the action for a free nonrelativistic particle.

[Deriving the equation of motion] Now, we would like to derive the equation of motion for a particle for a particle
moving through an arbitrary spacetime described by a generic metric g,,,. To do so, we would like to extremize the
action above such that §S = 0, in a variational calculus sense. This will give us the equation of motion for this particle.
The solution to this equation will be a worldline *()) describing the path of the particle through spacetime. Here, A
is a parameter whose value is increasing as we move along the curve. For notational simplicity, let me introduce the
function f as
dxt dx”
f*g;w N dN (5)

Let me also omit the —m factor in front of the action above since it is just a multiplicative constant that can’t affect
the equation of motion. With these choices, the action of my particle in an arbitrary spacetime is

S = / V= fdA. (6)



Then,

1 1
59 = fi/ﬁéfd/\. (1)

Now, let’s make the very convenient choice that our arbitrary parameter A is the actual proper time 7 measured by
a clock moving along with the particle. This makes f very simple

dxt dx”

f= 0w g g

= gput'u’ = -1, (8)

since u* is the four-velocity of the particle. With this choice, we then have

1
55:7/5]%:0. )
So, we have boiled down the problem to computing § f. Using the chain and product rule, we have
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Thus,
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where in the third line we have integrated by parts, assuming the variation dz* to vanish on the boundary of spacetime.
Since 65 = 0, we obtain

Pzt 1 dx? dx¥
gyaﬁ + i(augua + avgo,u - aaguu)?? = 0 (12)

Often, we multiply this by the inverse metric g°? to obtain

d?zr 1 dxt dx¥
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It is useful to define the object
TP = 1 pPo(H 0 15) 14
n% - 59 ( uglla + ugau - o’guu)7 ( )

called the Christoffel connection or symbol. If is not a tensor in general, but note that I'f,, = I', . With this simplified
notation, we obtain

A2z o dzt @

dr? modr dr

~0. (15)

This is the geodesic equation describing the worldline of a particle propagating freely through an arbitrary spacetime
with metric g,,,. Note that the metric enters exclusively through the Christoffel connection I'7,,,.



II. EXAMPLE IN FLAT SPACETIME

For a flat spacetime with Minkowski metric 7,,,, all the Christoffel connection coefficients are zero since the metric

contains only constant numbers (+1 and —1), I'f, = 0. So, the geodesic equation is simply

d%axP
=0 16
dr? ’ (16)
which has for general solutions
xf = a7+, (17)

a straight line through spacetime. For instance, consider a particle at y = z = 0 moving along the z-axis with speed
v such that ¢ = 0 when z = 0. This immediately implies b = 0 for all o, and a¥ = a®* = 0. We are left with

t=a’7 x=a"T. (18)

T =wv,t = —t. (19)

Thus with v, = a®/a’, the solution to the geodesic equation in flat spacetime matches our intuition.



