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I. THE GEODESIC EQUATION

[Generalizing Newton’s 2nd law] So far, we have discussed spacetimes for which a metric gµν allows us to compute
small spacetime interval ds2

ds2 = gµνdx
µdxν . (1)

Now, we would like to study how test particles move in such spacetimes, that is, if I set a particle at some point p
with three-velocity ~v, what will its trajectory be? In a sense, we are looking for a generalization of Newton’s second

law ~F = m~a, where ~F here is purely the gravitational force, that is

d2~x

dt2
= −~∇Φ(t, ~x), (2)

where Φ is the Newtonian gravitational potential. Specifically, we are looking for an equation valid in all reference
frames, that is, a tensor equation.

[The action for a single particle] As we usually do in physics to find the equation of motion for some process,
we first write down the action. For a freely-falling particle of mass m, the action is simply the particle’s proper time
S = −mτ = −m

∫ √
−ds2. If you are unimpressed by this, note that this expression reduces to what you are used to

in classical mechanics in the nonrelativistic limit in flat spacetime.

S = −m
∫ √

−ds2 (3)

= −m
∫ √

−ηµνdxµdxν

= −m
∫ √

dt2 − d~x2

= −m
∫ √

1−
(
d~x

dt

)2

dt

≈ −m
∫

(1− 1

2
v2)dt (v � 1)

=

∫
(−m+

1

2
mv2)dt. (4)

Thus, up to a constant (which happens to be the rest mass of the particle) which can’t affect the equation of motion,
we indeed retrieve the action for a free nonrelativistic particle.

[Deriving the equation of motion] Now, we would like to derive the equation of motion for a particle for a particle
moving through an arbitrary spacetime described by a generic metric gµν . To do so, we would like to extremize the
action above such that δS = 0, in a variational calculus sense. This will give us the equation of motion for this particle.
The solution to this equation will be a worldline xµ(λ) describing the path of the particle through spacetime. Here, λ
is a parameter whose value is increasing as we move along the curve. For notational simplicity, let me introduce the
function f as

f ≡ gµν
dxµ

dλ

dxν

dλ
. (5)

Let me also omit the −m factor in front of the action above since it is just a multiplicative constant that can’t affect
the equation of motion. With these choices, the action of my particle in an arbitrary spacetime is

S =

∫ √
−fdλ. (6)
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Then,

δS = −1

2

∫
1√
−f

δfdλ. (7)

Now, let’s make the very convenient choice that our arbitrary parameter λ is the actual proper time τ measured by
a clock moving along with the particle. This makes f very simple

f = gµν
dxµ

dτ

dxν

dτ
= gµνu

µuν = −1, (8)

since uµ is the four-velocity of the particle. With this choice, we then have

δS = −1

2

∫
δfdτ = 0. (9)

So, we have boiled down the problem to computing δf . Using the chain and product rule, we have

δf = (∂σgµν)
dxµ

dτ

dxν

dτ
δxσ + gµν

d(δxµ)

dτ

dxν

dτ
+ gµν

dxµ

dτ

d(δxν)

dτ
(10)

Thus,

δS = −1

2

∫
δfdτ

= −1

2

∫ [
(∂σgµν)

dxµ

dτ

dxν

dτ
δxσ + gµν

d(δxµ)

dτ

dxν

dτ
+ gµν

dxµ

dτ

d(δxν)

dτ

]
dτ

= −1

2

∫ [
(∂σgµν)

dxµ

dτ

dxν

dτ
δxσ − d

dτ
(gµν

dxν

dτ
)δxµ − d

dτ
(gµν

dxµ

dτ
)δxν

]
dτ

= −1

2

∫ [
(∂σgµν)

dxµ

dτ

dxν

dτ
δxσ −

(
(∂σgµν)

dxσ

dτ

dxν

dτ
+ gµν

d2xν

dτ2

)
δxµ −

(
(∂σgµν)

dxσ

dτ

dxµ

dτ
+ gµν

d2xµ

dτ2

)
δxν
]
dτ

=

∫ [
gµσ

d2xµ

dτ2
+

1

2
(∂µgνσ + ∂νgσµ − ∂σgµν)

dxµ

dτ

dxν

dτ

]
δxσdτ = 0, (11)

where in the third line we have integrated by parts, assuming the variation δxµ to vanish on the boundary of spacetime.
Since δS = 0, we obtain

gµσ
d2xµ

dτ2
+

1

2
(∂µgνσ + ∂νgσµ − ∂σgµν)

dxµ

dτ

dxν

dτ
= 0. (12)

Often, we multiply this by the inverse metric gρσ to obtain

d2xρ

dτ2
+

1

2
gρσ(∂µgνσ + ∂νgσµ − ∂σgµν)

dxµ

dτ

dxν

dτ
= 0. (13)

It is useful to define the object

Γρµν ≡
1

2
gρσ(∂µgνσ + ∂νgσµ − ∂σgµν), (14)

called the Christoffel connection or symbol. It is not a tensor in general, but note that Γρµν = Γρνµ. With this simplified
notation, we obtain

d2xρ

dτ2
+ Γρµν

dxµ

dτ

dxν

dτ
= 0. (15)

This is the geodesic equation describing the worldline of a particle propagating freely through an arbitrary spacetime
with metric gµν . Note that the metric enters exclusively through the Christoffel connection Γρµν .
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II. EXAMPLE IN FLAT SPACETIME

For a flat spacetime with Minkowski metric ηµν , all the Christoffel connection coefficients are zero since the metric
contains only constant numbers (+1 and −1), Γρµν = 0. So, the geodesic equation is simply

d2xρ

dτ2
= 0, (16)

which has for general solutions

xρ = aρτ + bρ, (17)

a straight line through spacetime. For instance, consider a particle at y = z = 0 moving along the x-axis with speed
vx such that t = 0 when x = 0. This immediately implies bσ = 0 for all σ, and ay = az = 0. We are left with

t = a0τ, x = axτ. (18)

But since the particle is moving at constant velocity, we also know

x = vxt =
ax

a0
t. (19)

Thus with vx = ax/a0, the solution to the geodesic equation in flat spacetime matches our intuition.


