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I. GRAVITATIONAL WAVE SOLUTION IN VACUUM

Last time, we saw that in vacuum the only propagating degrees of freedom were gravitational waves. These were
easiest to describe in the transverse-traceless gauge

hTT
µν = Aµνe

ikσx
σ

, (1)

where Aµν is a constant, symmetric (0, 2) tensor obeying

A0ν = 0 (2)

ηµνAµν = 0, (3)

together with the condition kσk
σ = 0 and kµAµν = 0. We also saw that an object get stretched and compressed by a

passing gravitational wave according to

∆R

R
∼ A+/×, (4)

where R is the length of the object, and A+/× is the dimensionless amplitude of the passing gravitational waves,

which is typically A+/× ∼ 10−22 − 10−18.
This week we would like to answer two questions:

1. How are gravitational wave generated? To answer this, we will need to move away from the pure vacuum
solution and consider how the dynamic of the stress-energy tensor can “shake” spacetime.

2. What is the energy carried by gravitational waves? Just light an object emitting light is losing energy,
objects emitting gravitational waves will lose energy.

We shall first tackle question 2 here, and consider question 1 next time.

II. GRAVITATIONAL ENERGY IN GENERAL RELATIVITY

The gravitational field carries energy From our experience in electromagnetism, we know that electric and
magnetic fields carry energy. In fact, we’ve computed in a past homework assignment the stress-energy tensor in
the presence of electric and magnetic field, and use this tensor to compute the metric around a charged black hole.
The gravitational field is no different: it contains stored energy. It’s something we are quite familiar from Newtonian
gravity where we often compute the gravitational potential energy between two gravitationally-bound objects.

The difficulty of describing gravitational energy in GR In General Relativity, we immediately run into problems
trying to discuss the energy stored in the gravitational field. Looking at the Einstein equation

Gµν = 8πGTµν , (5)

the stress-energy tensor Tµν appearing on the right-hand side contains all the non-gravitational energy and momentum
that the spacetime contains. This tensor tells us nothing about the energy stored in the gravitational field
itself (i.e. in the curvature of spacetime). That information is instead encoded in the structure of the Einstein
tensor Gµν , which makes the discussion of the energy “stored” in the gravitational field rather difficult for two main
reasons:

• Non-locality: General Relativity is a local theory, meaning that all objects entering the theory (Einstein tensor,
stress-energy tensor, etc.) are all evaluated at one spacetime point. However, discussing the energy stored in
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the gravitational field require us to consider the curvature of spacetime over an extended region of spacetime,
which is necessarily nonlocal.

To see this, remember that in an arbitrary curved spacetime, we can always make a local coordinate (gauge)
transformation to go to a locally inertial frame in which ∂µT

µν = 0, implying that non-gravitational energy and
momentum are conserved locally. But if we want the energy stored in the gravitational field to be transferred
to a matter component (or vice-versa) then we must consider a larger region of spacetime where the metric is
no longer Minkowski throughout, hence abandoning locality.

This also means that the energy stored in the gravitational field cannot be represented by a local
tensor.

• Higher-order perturbation theory needed: In our analysis so far, we have only kept terms in the
Einstein equation that were first order in the small metric perturbation hµν . However, the energy stored in the
gravitational field is encoded in the nonlinear terms in the Einstein equation, i.e. terms that are quadratic
and higher-order in hµν . One way to see this is to remember that the energy stored in the gravitational field
will itself source spacetime curvature, and that this “sourcing” is necessarily nonlinear. Note that the fact that
the energy stored in the gravitational field is at least quadratic in hµν is consistent with electrodynamics where
the energy stored in the field is quadratic in the field (i.e. T00 ∝ E2 +B2).

Einstein equation to second-order Now, to first order in perturbation, we saw that the trace-reversed perturbation
Hµν satisfies

∂α∂
αHµν = −16πGTµν (6)

in the Lorenz gauge. At second order in perturbation theory, there will be a significant number of terms that are

quadratic in Hµν ; let’s write down their contribution to the Einstein tensor as 2G
(2)
µν . Keeping these contributions to

the Einstein equation we have

∂α∂
αHµν − 2G(2)

µν = −16πGTµν . (7)

Now, we adopt the point of view that G
(2)
µν represents the stress-energy contained in the gravitational wave, and move

it to the right-hand side of the equation and define

TGW
µν ≡ −〈G

(2)
µν 〉

8πG
, (8)

where the bracket means that we are averaging over a sizable region of spacetime. This is the effective stress-energy
tensor for the energy stored in gravitational waves. This means we now have

∂α∂
αHµν = −16πG (Tµν + TGW

µν ), (9)

as our equation for gravitational wave propagation.

Energy conservation In the Lorenz gauge, we have ∂µ(Tµν + TµνGW) = 0, implying that the sum of matter-energy
and gravitational energy is conserved.

III. STRESS-ENERGY FOR GRAVITATIONAL WAVES

Let’s work out the form of TGW
µν for a + polarized gravitational wave traveling in the z direction. The metric takes

the form

gµν =

 −1 0 0 0
0 1 + h+(t, z) 0 0
0 0 1− h+(t, z) 0
0 0 0 1

 , (10)

where

h+(t, z) = A+ cos (ωt− ωz). (11)
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In Box 32.1, the Ricci tensor is computed leading to

R
(2)
tt = R(2)

zz = h+ḧ+ +
1

2
ḣ+ḣ+, (12)

together with R
(2)
xx = R

(2)
yy = 0. We now need to discuss spacetime averaging 〈. . .〉. The key element is that the

derivative of a quantity averaged of a region of spacetime will vanish

〈∂µX〉 = 0, (13)

that is, we consider a given region of spacetime to be static on average. This implies that

〈R(2)
tt 〉 = 〈h+ḧ+ +

1

2
ḣ+ḣ+〉

= 〈h+ḧ+〉+
1

2
〈ḣ+ḣ+〉

= 〈∂t(h+ḣ+)− ḣ+ḣ+〉+
1

2
〈ḣ+ḣ+〉

= 〈∂t(h+ḣ+)〉 − 〈ḣ+ḣ+〉+
1

2
〈ḣ+ḣ+〉

= −1

2
〈ḣ+ḣ+〉. (14)

In Box 32.2, it is shown that the Ricci scalar at second order in the perturbation is zero

〈R(2)〉 = 〈ηttR(2)
tt + ηzzR(2)

zz 〉 = 0. (15)

This immediately means that

TGW
tt = −〈G

(2)
tt 〉

8πG
= −〈R

(2)
tt 〉

8πG
=
〈ḣ+ḣ+〉
16πG

. (16)

Now, there is nothing special about the + polarization, and we could also have used the × polarization. In fact, a +
polarization could be transformed into a × polarization by a 45 degree rotation of our coordinate system. So, for a
general gravitational wave which contains both polarization, we must have

TGW
tt =

〈ḣ+ḣ+ + ḣ×ḣ×〉
16πG

. (17)

In Box 32.3, it is shown that this can be rewritten in the transverse-traceless gauge

TGW
tt =

〈ḣTT
jk ḣ

jk
TT〉

32πG
. (18)

To get this, note that h+ = hTT
xx = −hTT

yy , and h× = hTT
xy = hTT

yx . In all generality, we have

TGW
µν =

〈
(∂µh

TT
ρσ )(∂νh

ρσ
TT)

〉
32πG

. (19)

An interesting result is that the gravitational wave flux (energy transported per unit time per unit area in the direction
of the wave’s motion), is actually equal to TGW

tt . This is because TGW
tz , which is the energy flux, is actually equal to

TGW
tt ,

TGW
tz = TGW

tt . (20)


