PHYS 480/581: General Relativity Gravitational Waves

(Dated: April 17, 2024)

I. THE TRANSVERSE-TRACELESS GAUGE

We again consider in the weak regime where spacetime is nearly flat and the metric can be written as

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left|h_{\mu \nu}\right| \ll 1 \tag{1}
\end{equation*}
$$

where $\eta_{\mu \nu}$ is the Minkowski metric. As we did last time, we parameterize the metric perturbation as follows:

$$
\begin{align*}
h_{00} & =-2 \Phi \tag{2}\\
h_{0 i} & =w_{i} \tag{3}\\
h_{i j} & =2 s_{i j}-2 \Psi \delta_{i j} \tag{4}
\end{align*}
$$

where Ψ encodes the trace of $h_{i j}$, and $s_{i j}$ is traceless

$$
\begin{align*}
\Psi & =-\frac{1}{6} \delta^{i j} h_{i j} \tag{5}\\
s_{i j} & =\frac{1}{2}\left(h_{i j}-\frac{1}{3} \delta^{k l} h_{k l} \delta_{i j}\right) \tag{6}
\end{align*}
$$

and latin indices (e.g., i, j, k, l) represent only spatial components. Here, Φ and Ψ are (Lorentz) scalar functions, w_{i} are the components of a three-vector, and $s_{i j}$ is a symmetric traceless 3-by-3 tensor. Now, suppose that we perform a gauge transformation $x^{\prime \mu}=x^{\mu}-\xi^{\mu}$, such that

$$
\begin{equation*}
\partial_{i} s^{i j}=0, \quad \partial_{i} w^{i}=0 \tag{7}
\end{equation*}
$$

Note that these are four equations, which will determine the four components of ξ^{μ} (see homework). You will also show in the homework that in vacuum $\left(T_{\mu \nu}=0\right)$, the solution to Einstein equation in this gauge are

$$
\begin{align*}
\Phi & =0, \tag{8}\\
\Psi & =0, \tag{9}\\
w^{i} & =0 . \tag{10}
\end{align*}
$$

This means that the metric perturbation takes the simple form

$$
h_{\mu \nu}^{\mathrm{TT}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{11}\\
0 & & & \\
0 & 2 s_{i j} & \\
0 & &
\end{array}\right]
$$

where the TT subscript refers to the "transverse-traceless" gauge, since $s_{i j}$ is traceless. Important: this tells us that in vacuum, only traceless spatial fluctuation of the metric can exist. While we could now write the remaining Einstein equation in terms of $s_{i j}$, it is customary to to write gravitational wave solutions in terms of $h_{\mu \nu}^{\mathrm{TT}}$. Note that in this gauge, the trace-reversed perturbation $H_{\mu \nu}$ is equal to metric perturbation itself

$$
\begin{equation*}
H_{\mu \nu}^{\mathrm{TT}}=h_{\mu \nu}^{\mathrm{TT}}, \tag{12}
\end{equation*}
$$

since both perturbations are traceless in this case. Now, the $i j$ component of the Einstein equation in vacuum implies that $h_{\mu \nu}^{\mathrm{TT}}$ obeys a wave equation

$$
\begin{equation*}
\square^{2} h_{\mu \nu}^{\mathrm{TT}}=0 \tag{13}
\end{equation*}
$$

which is just the wave equation, together with the requirements above

$$
\begin{align*}
h_{0 \nu}^{\mathrm{TT}} & =0 \tag{14}\\
\eta^{\mu \nu} h_{\mu \nu}^{\mathrm{TT}} & =0 \tag{15}\\
\partial_{\mu} h_{\mathrm{TT}}^{\mu \nu} & =0 . \tag{16}
\end{align*}
$$

Note that the last condition is what Moore calls the Lorenz gauge, but it is really the requirement that the metric perturbations are transverse.

II. GRAVITATIONAL WAVES

Since $h_{\mu \nu}^{\mathrm{TT}}$ obeys a wave equation, we know that one set of solutions are plane waves

$$
\begin{equation*}
h_{\mu \nu}^{\mathrm{TT}}=A_{\mu \nu} e^{i k_{\sigma} x^{\sigma}} \tag{17}
\end{equation*}
$$

where $A_{\mu \nu}$ is a constant, symmetric $(0,2)$ tensor obeying

$$
\begin{align*}
A_{0 \nu} & =0 \tag{18}\\
\eta^{\mu \nu} A_{\mu \nu} & =0 . \tag{19}
\end{align*}
$$

Equation (17) represents moving in the \vec{k} direction with speed $v=\omega / k$, where we have taken $k_{\sigma}=(\omega, \vec{k})$.The wave equation implies that (Box 31.1)

$$
\begin{align*}
\square^{2} h_{\mu \nu}^{\mathrm{TT}} & =0 \\
\eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} A_{\mu \nu} e^{i k_{\sigma} x^{\sigma}} & =0 \\
-k_{\sigma} k^{\sigma} h_{\mu \nu}^{\mathrm{TT}} & =0, \tag{20}
\end{align*}
$$

which implies in all generality that $k_{\sigma} k^{\sigma}=0$. This means that the wavenumber describing gravitational waves are always lightlike (or null). By definition, the means that gravitational waves always follow lightlike trajectories through spacetime with $v=\omega / k=1$ (remember that the speed of light is set to unity here). Finally, the transverse condition implies that (Box 31.1)

$$
\begin{align*}
\partial_{\mu} A^{\mu \nu} e^{i k_{\sigma} x^{\sigma}} & =0 \\
i k_{\mu} A^{\mu \nu} e^{i k_{\sigma} x^{\sigma}} & =0 \tag{21}
\end{align*}
$$

which implies that

$$
\begin{equation*}
k_{\mu} A^{\mu \nu}=0 \tag{22}
\end{equation*}
$$

which means that the vector k_{μ} is orthogonal to $A^{\mu \nu}$.
Now, let's pick a particular direction for the wave propagation: the z direction. This means that the wave vector takes the form

$$
\begin{equation*}
k^{\mu}=(\omega, 0,0, \omega) \tag{23}
\end{equation*}
$$

which automatically satisfies $k_{\mu} k^{\mu}=0$. Now, Eq. (22) implies

$$
\begin{equation*}
k_{\mu} A^{\mu \nu}=-\omega A^{0 \nu}+\omega A^{3 \nu}=0 \quad \Rightarrow A^{3 \nu}=0 \tag{24}
\end{equation*}
$$

since $A^{0 \nu}=0$. Now, the traceless-ness condition implies that

$$
\begin{equation*}
A_{11}+A_{22}=0 \tag{25}
\end{equation*}
$$

and we also have $A_{12}=A_{21}$ since $A_{\mu \nu}$ is symmetric. Thus,

$$
h_{\mu \nu}^{\mathrm{TT}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{26}\\
0 & A_{11} & A_{12} & 0 \\
0 & A_{12} & -A_{11} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] e^{i(\omega z-\omega t)}
$$

What is the motion of a test particle initially at rest in this spacetime $u^{\mu}=(1,0,0,0)$. Well, you can show that the geodesic equation for such a particle is (Box 31.3)

$$
\begin{equation*}
\frac{d^{2} x^{\alpha}}{d \tau^{2}}=-\Gamma_{\mu \nu}^{\alpha} u^{\mu} u^{\nu}=0 \tag{27}
\end{equation*}
$$

This is telling us that the coordinate of a particle doesn't change, which doesn't tell us much. A more illuminating analysis is to consider what happens to a ring of test particles of radius R initially at rest with respect to each other.

Imagine we place this ring at $z=0$. Then the displacement of each test particle from the origin is $\Delta x=R \cos \theta$, $\Delta y=R \sin \theta$, and $\Delta z=0$. The squared distance from the origin is

$$
\begin{align*}
\Delta s^{2} & =g_{\mu \nu} \Delta x^{\mu} \Delta x^{\nu} \\
& =\left(\eta_{\mu \nu}+h_{\mu \nu}^{\mathrm{TT}}\right) \Delta x^{\mu} \Delta x^{\nu} \\
& =\left(\eta_{\mu \nu}+A_{\mu \nu} \cos \omega t\right) \Delta x^{\mu} \Delta x^{\nu} \\
& =\left(1+A_{11} \cos \omega t\right) \Delta x^{2}+\left(1+A_{22} \cos \omega t\right) \Delta y^{2}+2 A_{12} \cos \omega t \Delta x \Delta y \tag{28}
\end{align*}
$$

Assume that only $A_{11}=A_{+}$is non-zero, we then get

$$
\begin{align*}
\Delta s^{2} & =R^{2}\left(1+A_{+} \cos \omega t\right) \cos ^{2} \theta+R^{2}\left(1-A_{+} \cos \omega t\right) \sin ^{2} \theta \\
& =R^{2}\left(1+A_{+} \cos \omega t \cos 2 \theta\right) \tag{29}
\end{align*}
$$

Then, if $A_{+} \ll 1$, then

$$
\begin{equation*}
\Delta s \approx R\left(1+\frac{1}{2} A_{+} \cos \omega t \cos 2 \theta\right) \tag{30}
\end{equation*}
$$

See Box 31.4 for the other polarization. And the amplitude $A_{+/ \times}$are indeed very small, with $A_{+/ \times} \sim 10^{-22}-10^{-18}$. To give you a sense of how small the effect is, consider how the distance between two mirrors change in the LIGO gravitational wave experiment as a gravitational wave passes by. This is given by

$$
\begin{equation*}
\Delta S=\frac{1}{2} R A_{+/ \times} \tag{31}
\end{equation*}
$$

Here $R=4 \mathrm{~km}$, which gives $\Delta S \sim 10^{-19} \mathrm{~m}$ for $A_{+/ \times}=10^{-22}$. This is 10^{4} smaller than the size of a proton! The fact that such shift can be measured is quite a feat of engineering.

