PHYS 480/581: General Relativity

Gravitational Waves
(Dated: April 17, 2024)

I. THE TRANSVERSE-TRACELESS GAUGE

We again consider in the weak regime where spacetime is nearly flat and the metric can be written as

v = Muw + P, |hpw‘ <1, (1)

where 7, is the Minkowski metric. As we did last time, we parameterize the metric perturbation as follows:
hoo = =20 (2)
h()i = w; (3)
hij = 28@' — 2\11(51']' (4)

where ¥ encodes the trace of h;;, and s;; is traceless
1.
U= _65 Thi; (5)
1 1

and latin indices (e.g., 4, j, k, ) represent only spatial components. Here, ® and ¥ are (Lorentz) scalar functions, w;
are the components of a three-vector, and s;; is a symmetric traceless 3-by-3 tensor. Now, suppose that we perform
a gauge transformation z'# = z# — &*, such that

&-sij = 0, @-wi =0. (7)

Note that these are four equations, which will determine the four components of £# (see homework). You will also
show in the homework that in vacuum (7},, = 0), the solution to Einstein equation in this gauge are

=0, (8)
v =0, (9)
w' = 0. (10)
This means that the metric perturbation takes the simple form
00 0 O
hpy = 8 251 (11)
0

where the T'T subscript refers to the “transverse-traceless” gauge, since s;; is traceless. Important: this tells us
that in vacuum, only traceless spatial fluctuation of the metric can exist. While we could now write the
remaining Einstein equation in terms of s;;, it is customary to to write gravitational wave solutions in terms of hEVT .
Note that in this gauge, the trace-reversed perturbation H,,, is equal to metric perturbation itself
TT TT

Hy = hu s (12)
since both perturbations are traceless in this case. Now, the ij component of the Einstein equation in vacuum implies
that T obeys a wave equation

pv

O%h)y =0 (13)
which is just the wave equation, together with the requirements above
hg, =0 (14)
1"y =0 (15)
Ouhipy = 0. (16)

Note that the last condition is what Moore calls the Lorenz gauge, but it is really the requirement that the metric
perturbations are transverse.



II. GRAVITATIONAL WAVES

Since hEVT obeys a wave equation, we know that one set of solutions are plane waves
hiy = Aue*e, (17)
where A, is a constant, symmetric (0,2) tensor obeying

Aoy =0 (18)
UWAW =0. (19)

Equation (17) represents moving in the k direction with speed v = w/k, where we have taken k, = (w, k).The wave
equation implies that (Box 31.1)

O%h), =0
no‘ﬁaaaﬁAm,eik”ma -0
~kekh), =0, (20)

which implies in all generality that k,k° = 0. This means that the wavenumber describing gravitational waves
are always lightlike (or null). By definition, the means that gravitational waves always follow lightlike
trajectories through spacetime with v = w/k = 1 (remember that the speed of light is set to unity
here). Finally, the transverse condition implies that (Box 31.1)

O A eker" =
ik, AP etFe T = 0, (21)
which implies that
k,AM =0, (22)
which means that the vector k,, is orthogonal to A*”.
Now, let’s pick a particular direction for the wave propagation: the z direction. This means that the wave vector
takes the form
k* = (w,0,0,w) (23)
which automatically satisfies k, k" = 0. Now, Eq. (22) implies
kAP = —wAY + WA =0 = A =0, (24)
since A% = 0. Now, the traceless-ness condition implies that
A+ Agy =0, (25)

and we also have Ajp = Ag; since A, is symmetric. Thus,

0 O 0 0
tr_ |0 Air Az 0| iwz—wi)
P 0 Ay —Ap 0| € (26)
0 0 0 0

What is the motion of a test particle initially at rest in this spacetime u* = (1,0,0,0). Well, you can show that the

geodesic equation for such a particle is (Box 31.3)
d?x o L
pcal =T, utu” = 0. (27)

This is telling us that the coordinate of a particle doesn’t change, which doesn’t tell us much. A more illuminating
analysis is to consider what happens to a ring of test particles of radius R initially at rest with respect to each other.



Imagine we place this ring at z = 0. Then the displacement of each test particle from the origin is Az = Rcos#,
Ay = Rsinf, and Az = 0. The squared distance from the origin is

As? = g, Azt Az
= (nuu + hEE)A.'E“ASL‘V
= (Nuv + App coswt) Azt Ax”
= (1+ A1y coswt)Az® + (1 + Agg coswt) Ay® + 2415 cos wtAzAy (28)

Assume that only A;; = A, is non-zero, we then get

As? = R*(1 + A, coswt) cos? @ + R*(1 — A, coswt)sin® @
= R*(1 + A coswt cos 26) (29)

Then, if A, < 1, then

As~ R(1+ %A+ cos wt cos 20) (30)

See Box 31.4 for the other polarization. And the amplitude A,/ are indeed very small, with A, ~ 1072210718,
To give you a sense of how small the effect is, consider how the distance between two mirrors change in the LIGO
gravitational wave experiment as a gravitational wave passes by. This is given by

1

Here R = 4 km, which gives AS ~ 10~%m for Ap/x = 10722, This is 10* smaller than the size of a proton! The fact
that such shift can be measured is quite a feat of engineering.



