
PHYS 480/581: General Relativity
Gravitational Waves

(Dated: April 17, 2024)

I. THE TRANSVERSE-TRACELESS GAUGE

We again consider in the weak regime where spacetime is nearly flat and the metric can be written as

gµν = ηµν + hµν , |hµν | � 1, (1)

where ηµν is the Minkowski metric. As we did last time, we parameterize the metric perturbation as follows:

h00 = −2Φ (2)

h0i = wi (3)

hij = 2sij − 2Ψδij (4)

where Ψ encodes the trace of hij , and sij is traceless

Ψ = −1

6
δijhij (5)

sij =
1

2

(
hij −

1

3
δklhklδij

)
, (6)

and latin indices (e.g., i, j, k, l) represent only spatial components. Here, Φ and Ψ are (Lorentz) scalar functions, wi
are the components of a three-vector, and sij is a symmetric traceless 3-by-3 tensor. Now, suppose that we perform
a gauge transformation x′µ = xµ − ξµ, such that

∂is
ij = 0, ∂iw

i = 0. (7)

Note that these are four equations, which will determine the four components of ξµ (see homework). You will also
show in the homework that in vacuum (Tµν = 0), the solution to Einstein equation in this gauge are

Φ = 0, (8)

Ψ = 0, (9)

wi = 0. (10)

This means that the metric perturbation takes the simple form

hTT
µν =

 0 0 0 0
0
0 2sij
0

 (11)

where the TT subscript refers to the “transverse-traceless” gauge, since sij is traceless. Important: this tells us
that in vacuum, only traceless spatial fluctuation of the metric can exist. While we could now write the
remaining Einstein equation in terms of sij , it is customary to to write gravitational wave solutions in terms of hTT

µν .
Note that in this gauge, the trace-reversed perturbation Hµν is equal to metric perturbation itself

HTT
µν = hTT

µν , (12)

since both perturbations are traceless in this case. Now, the ij component of the Einstein equation in vacuum implies
that hTT

µν obeys a wave equation

�2hTT
µν = 0 (13)

which is just the wave equation, together with the requirements above

hTT
0ν = 0 (14)

ηµνhTT
µν = 0 (15)

∂µh
µν
TT = 0. (16)

Note that the last condition is what Moore calls the Lorenz gauge, but it is really the requirement that the metric
perturbations are transverse.
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II. GRAVITATIONAL WAVES

Since hTT
µν obeys a wave equation, we know that one set of solutions are plane waves

hTT
µν = Aµνe

ikσx
σ

, (17)

where Aµν is a constant, symmetric (0, 2) tensor obeying

A0ν = 0 (18)

ηµνAµν = 0. (19)

Equation (17) represents moving in the ~k direction with speed v = ω/k, where we have taken kσ = (ω,~k).The wave
equation implies that (Box 31.1)

�2hTT
µν = 0

ηαβ∂α∂βAµνe
ikσx

σ

= 0

−kσkσhTT
µν = 0, (20)

which implies in all generality that kσk
σ = 0. This means that the wavenumber describing gravitational waves

are always lightlike (or null). By definition, the means that gravitational waves always follow lightlike
trajectories through spacetime with v = ω/k = 1 (remember that the speed of light is set to unity
here). Finally, the transverse condition implies that (Box 31.1)

∂µA
µνeikσx

σ

= 0

ikµA
µνeikσx

σ

= 0, (21)

which implies that

kµA
µν = 0, (22)

which means that the vector kµ is orthogonal to Aµν .
Now, let’s pick a particular direction for the wave propagation: the z direction. This means that the wave vector

takes the form

kµ = (ω, 0, 0, ω) (23)

which automatically satisfies kµk
µ = 0. Now, Eq. (22) implies

kµA
µν = −ωA0ν + ωA3ν = 0 ⇒ A3ν = 0, (24)

since A0ν = 0. Now, the traceless-ness condition implies that

A11 +A22 = 0, (25)

and we also have A12 = A21 since Aµν is symmetric. Thus,

hTT
µν =

 0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 ei(ωz−ωt) (26)

What is the motion of a test particle initially at rest in this spacetime uµ = (1, 0, 0, 0). Well, you can show that the
geodesic equation for such a particle is (Box 31.3)

d2xα

dτ2
= −Γαµνu

µuν = 0. (27)

This is telling us that the coordinate of a particle doesn’t change, which doesn’t tell us much. A more illuminating
analysis is to consider what happens to a ring of test particles of radius R initially at rest with respect to each other.
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Imagine we place this ring at z = 0. Then the displacement of each test particle from the origin is ∆x = R cos θ,
∆y = R sin θ, and ∆z = 0. The squared distance from the origin is

∆s2 = gµν∆xµ∆xν

= (ηµν + hTT
µν )∆xµ∆xν

= (ηµν +Aµν cosωt)∆xµ∆xν

= (1 +A11 cosωt)∆x2 + (1 +A22 cosωt)∆y2 + 2A12 cosωt∆x∆y (28)

Assume that only A11 = A+ is non-zero, we then get

∆s2 = R2(1 +A+ cosωt) cos2 θ +R2(1−A+ cosωt) sin2 θ

= R2(1 +A+ cosωt cos 2θ) (29)

Then, if A+ � 1, then

∆s ≈ R(1 +
1

2
A+ cosωt cos 2θ) (30)

See Box 31.4 for the other polarization. And the amplitude A+/× are indeed very small, with A+/× ∼ 10−22−10−18.
To give you a sense of how small the effect is, consider how the distance between two mirrors change in the LIGO
gravitational wave experiment as a gravitational wave passes by. This is given by

∆S =
1

2
RA+/× (31)

Here R = 4 km, which gives ∆S ∼ 10−19m for A+/× = 10−22. This is 104 smaller than the size of a proton! The fact
that such shift can be measured is quite a feat of engineering.


