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I. THE STRESS-ENERGY (OR ENERGY-MOMENTUM) TENSOR

So far, we have discussed various aspects of spacetime curvature such as how to determine whether a spacetime is
curved and what is the trajectory of a particle in curved spacetime. Now, it is time to introduce what is causing the
curvature of spacetime in the first place: its energy content. As we’ve done before, we want to define a tensor that
contains all information about the matter/energy content of spacetime (i.e. electrons, protons, photons, neutrinos,
energy contained in electric and magnetic field, other exotic energies). We call this tensor the “stress-energy” tensor
(or sometime the “energy-momentum” tensor), Tµν .

[Meaning the stress-energy tensor] The stress-energy tensor is symmetric Tµν = T νµ. In general, Tµν represents
the flux of four-momentum pµ across a surface of constant xν . Specifically, T 00 stands for the rest-frame energy
density, while T 0i is the momentum density (momentum per unit volume) in the ith direction (this is sometime
referred to as the “energy flux” in the ith direction). T ii gives the ith component of the force (per unit area) by
a fluid element in the i-direction: this is what we commonly refer to as the ith component of the pressure. The
off-diagonal spatial elements T ij (i 6= j) represent shear stresses, sometime referred to as “anisotropic pressure”.

[Stress-energy of a perfect fluid] A perfect fluid is specified by only two quantities: its rest-frame energy density
ρ and its isotropic rest-frame pressure p. In a local inertial frame (LIF), the stress-energy tensor for such a perfect
fluid is

Tµν =

 ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (1)

In a more general frame, this stress-energy tensor takes the form

Tµν = (ρ+ p)uµuν + pgµν , (2)

which of courses reduces to the above in a LIF where uµ = (1, 0, 0, 0) and gµν = ηµν . The perfect fluid may seem
like an unrealistic case, but it has real applications in the real world. For instance, a gas of relativistic electrons and
photons form a nearly perfect fluid with p = (1/3)ρ. Cold dust is like a perfect fluid with p = 0, which seems to
describe the behavior of dark matter in our Universe. Finally, we seem to live in a Universe dominated by “dark
energy”, which can be thought off as a perfect fluid with p = −ρ, resulting in Tµν = −ρgµν . Thus, the stress-energy
tensor of a perfect fluid has a lot of real-world applications.

[Connection to the action] The stress-energy tensor can describe any configuration of matter/energy present in
spacetime, including that of atoms forming the computer screen on which you are reading these notes. How do we
compute Tµν for such configurations? If you know the Lagrangian (really the Lagrangian density) L for some physical
system, you can compute its stress-energy tensor using

Tµν = −2
1√
−g

δS

δgµν
, (3)

where S is the action

S =

∫
d4xL, (4)

g is the determinant of the metric, and δ denotes a variational derivatives. The above is often quoted as the definition
of the stress-energy tensor. It says that, up to normalization factors, the stress-energy tensor is the rate of change of
the action S with respect to the spacetime metric itself.
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[Connection to thermal distributions] Another useful case is if you have a collection of particles with known
probability distribution function f(p) (such as the Fermi-Dirac or Bose-Einstein distributions) for which the stress-
energy tensor is

Tµν =

∫
d3~p

p0
√
−g pµpνf(p). (5)

[Conservation of energy-momentum] In classical physics, energy and momentum are always conserved and this
should be reflected in the properties of Tµν . In curved spacetime, the corresponding statement is that the stress-energy
tensor is covariantly conserved,

∇νTµν = 0, (6)

where ∇ν is a covariant derivative. In flat spacetime, the above will always reduce to the familiar energy and mo-
mentum conservation equations. However, in curved spacetime, you may find that your “familiar” Newtonian notion
of energy/momentum conservation is violated. Don’t panic. ∇νTµν = 0 defines the notion of energy-momentum
conservation in curved spacetime.

II. ENERGY CONDITIONS

The components of the stress-energy tensor obey certain so-called “energy conditions”. These are often used in
General Relativity to prove certain singularity theorems and are thus useful jargon to know. Here are some of the
main ones:

• The Null Energy Condition (NEC) states that Tµν l
µlν ≥ 0 for all null vectors lµ. For a perfect fluid, this

implies ρ+ p ≥ 0.

• The Weak Energy Condition (WEC) states that Tµνt
µtν ≥ 0 for all timelike vector tµ. For a perfect fluid,

this implies ρ ≥ 0 and ρ + p ≥ 0, i.e. like the NEC with the extra requirement that the energy density be
positive.

• The Dominant Energy Condition (DEC) includes the WEP, with the additional requirement that Tµνtµ is
not a spacelike vector (that is TµνT

ν
λt
µtλ ≤ 0). For a perfect fluid, this implies that ρ ≥ |p|. The DEC implies

the WEC and the NEC.

• The Strong Energy Condition (SEC) states that Tµνt
µtν ≥ 1

2T
λ
λt
σtσ for all timelike vector tµ. For a perfect

fluid, the implies ρ+ p ≥ 0 and ρ+ 3p ≥ 0. The SEC implies the NEC, but not the WEC.


