PHYS 480/581: General Relativity
Tensors

Prof. Cyr-Racine
(Dated: February 7, 2024)

I. REVIEW OF VECTORS AND DUAL VECTORS

We have seen before that a (four-)vector is an object that lives in the tangent space T, M of some spacetime point
p of some manifold M, as illustrated in Fig. 1. Dual vectors (or one-forms) live in what we call the dual vector space
(or cotangent space) Ty M at point p. I remind you that dual vectors are linear maps from the original vector space
T, M to the real numbers; that is, if w € T; M is a dual vector, it acts as

w(@V +bW) =aw(V)+bw(W) € R, (1)

where V', W are vectors, and a, b are real numbers. Again, you should think of a dual vector as a “machine” that
“eats” a vector and returns a real number. We have also seen that we can expand a vector in terms of a coordinate
basis V' = V*e(,). We can of course also defined a coordinate basis for dual vectors such that w = wue(”). The dual

basis vector e(® are defined from the coordinate basis vectors as

e (e(,)) = o (2)
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FIG. 1. Tangent space T}, of a two-dimensional manifold at point p. Reproduced from arXiv:gr-qc/9712019.

With this construction, the action of a dual vector on a vector is something we are quite familiar with
w(V) = we (VVe(,)
= w#V”e(“)(e(,,))
=w, V"o
= wll VH? (3)
which is what we have been calling the inner (or dot) product between dual vector and a vector w - V. Note that this

product is the same in every frame. A simple example of a dual vector is the gradient of a scalar function ¢, which
we will denote d¢

d¢ = (9.¢)e®, (4)
where 9, = 9/0z". Upon a change of coordinates, the components of vectors and dual vectors transform as
ox'* ox”
o v [
V= oxv vy “n = &E’uw”’ (5)
respectively. The corresponding transformation laws for the coordinate basis vectors and dual vectors are
;o o o — 97" o)

€)= i &) 907 © (6)



II. TENSORS

[What is a tensor?] Much like a dual vector is a linear map from vectors to R, a tensor T of rank (k,l) is a
multilinear map from k dual vectors and [ vectors to the real numbers

T:T;x...xTyxT,x...xT, =R, (7)

k times I times
where x is the standard Cartesian product. You should think of the tensor T' has a “machine” that “eats” k dual

vectors and [ vectors and returns a real number.

[Tensors act linearly on their arguments] As the “multilinear” characteristic implies, tensors act linearly on their
arguments. For instance, for a rank (1,1) tensor T, we have

T(aw +bn,cV +dW) =acT(w,V)+adT(w,W)+bcT(n,V)+bdT(n, W) € R, (8)

where a, b, ¢, d are real numbers, w, 1 are dual vectors, and V', W are vectors.

[Components of Tensors| Now, just like we can write vectors and dual vectors in terms of their components in a
coordinate basis, we can write a rank (k,!) tensor in terms of its components is such a basis. To construct a basis for
the space of all (k, 1) tensors, we simply take the tensor product @ of k& coordinate basis vectors e(,) and [ coordinate

basis dual vectors e(*)
e(lJfl) ®"'e(ﬂk) ®e(yl) ®...®e(”l). (9)
With this basis, I can write my rank (k,[) tensor T in terms of its components as
T = Tul‘..ukmwwe(m) Q...ep,) ® e g . xe®), (10)

[Transformation law for tensors] Now, the abstract tensor T' must be the same in every frames. From Eq. (6)
above, I know how my coordinate basis vectors and dual vectors transform under a change of coordinates. We thus
have

T = TH1HE 1 Cu) D€y ® e X...Q0 e™)

vy.

= T'”l"'“’;lmule’(#l) ... e’(#k) e ... ge®

Ox™ O™k ox'™ oz
... B B
= T'"M #llc/l-uVlme(al)®'”®me(ak)® 3x61 e( 1)®®me( l), (11)
from which we get
Oz Oz '™ oz'™
ap...Qk _ I .. ke
T B1B = Py e DB B Tty (12)
Inverting this relationship, we get
T _ o'k Ox'Hre b oxB — (13)
ViVl gpar T Qrak ggivi T Qv Pr-Bit

Equation (13) is the definition of a rank (k,l) tensor. Any object that transforms like in Eq. (13) under a coordinate
transformation  — 2’ will be a bone fide rank (k,1) tensor. Note: not every object having k upper indices and [
lower indices is a tensor. We will see some examples of this later on.

[How tensors act on their arguments] Now that we know how component of tensors can be written down in
coordinate bases, we can easily understand how a tensor T acts on its arguments. For instance, for a rank (1,2)
tensor that takes in two vectors V', W and one dual vectors w to return a real number, we have

T(w,V,W)=TF e, ® e @ el (wee®, VPes), We(,))
= T",pe( (wae'™) @ eV (Vi) @ e (We(,)
_ B sV SO
=T, ,wa VPW76,6507
=T W, VYW € R, (14)



which is a rather intuitive way for tensors to act on vectors and dual vectors.

[No need to act on all their arguments] While we have defined tensors as multilinear maps from a set of vectors
and dual vectors to the real numbers, we do not always have to act the tensor on its full set of arguments. For
instance, for our rank (1,2) tensor T' above, we can act it on a single vector V' to form a perfectly fine rank (1,1)
tensor S, whose components are given by

St,=Tr, V. (15)
I could also act the tensor T on a rank (2,0) tensor R to form a perfectly fine vector U

Ut =TF R (16)

III. TENSORS OPERATIONS
A. Trace

The trace X of a (1,1) tensor X is

X =XV (17)

v

If you think of X”, has a matrix, then this is just the sum of the diagonal elements. However, if you are given X,,,,
than X is not the sum of the diagonal elements of X, since

X =X" = ¢"* Xo. (18)

A good example of this the trace of the Minkowski metric 7,,,. We might naively think that its trace is —1+14+141 = 2,
while in fact it is

N Ny = 0) = 4. (19)

B. Contraction (or partial tracing)

We can contract one upper and one lower indices from a rank (k,!) tensor to form a (k — 1,/ — 1) tensor

e, =T, (20)

.-
In general, which indices are contracted together is important; different choices will lead to different results, i.e.

TMVpO‘V 7é Tupuou' (21)

C. Addition

You can add two rank (k,!) tensors to form another rank (k,!) tensor

H1--- Mk — QH1---Hk MMk
T vi...vp S Vi...V] + U v

(22)

1...01°

D. Product

We can create a rank (k; + ko, 11 +12) tensor by taking the tensor product between a rank (k1,1;) tensor and a rank
(k2,12) tensor

H1--HEkq + ko _ QM1 Hkg Hkq+1--Hko
T Vi Vig4lg S Vi...Vy ® U Vig41-Vig* (23)



E. Lowering or raising indices

We can use the metric g, and inverse metric g"” to raise or lower indices, i.e.

)
THVP = g#aguﬁgmgnéngam ¢ (24)

F. Symmetric and antisymmetric tensors

A tensor is said to be symmetric in two of its first and third indices if
Sypw = Svpp- (25)
Similarly, a tensor is said to be symmetric in its two first indices if
Spupv = Sppu- (26)
A tensor is to be symmetric if it is unchanged under all possible permutations of its indices.
Supv = Suvp = Spuv = Spuu = Svpp = Supp- (27)

For instance, the metric is a symmetric (0,2) tensor since g,, = g,,. A tensor is said to be antisymmetric in two of
its first and third indices if

Supv = *Sup/t- (28)
Similarly, a tensor is said to be antisymmetric in its two first indices if

Supv = =Spuv- (29)
If a tensor is said to be antisymmetric in all its indices, we just call this tensor antisymmetric (or completely anti-

symmetric).

G. Partial Derivatives

In general, the partial derivative of a tensor is not a tensor. For instance,
T, * = d,R", (30)

is not a tensor in a general spacetime (however, it is in flat spacetime). We will soon see how to generalize the notion
of derivative in curved spacetime.



