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I. REVIEW OF VECTORS AND DUAL VECTORS

We have seen before that a (four-)vector is an object that lives in the tangent space TpM of some spacetime point
p of some manifold M , as illustrated in Fig. 1. Dual vectors (or one-forms) live in what we call the dual vector space
(or cotangent space) T ∗pM at point p. I remind you that dual vectors are linear maps from the original vector space
TpM to the real numbers; that is, if ω ∈ T ∗pM is a dual vector, it acts as

ω(aV + bW ) = aω(V ) + bω(W ) ∈ R, (1)

where V , W are vectors, and a, b are real numbers. Again, you should think of a dual vector as a “machine” that
“eats” a vector and returns a real number. We have also seen that we can expand a vector in terms of a coordinate
basis V = V µe(µ). We can of course also defined a coordinate basis for dual vectors such that ω = ωµe

(µ). The dual

basis vector e(µ) are defined from the coordinate basis vectors as

e(ν)(e(µ)) = δνµ. (2)
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plane which is tangent to the point. But inspiration aside, it is important to think of these

vectors as being located at a single point, rather than stretching from one point to another.

(Although this won’t stop us from drawing them as arrows on spacetime diagrams.)
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Later we will relate the tangent space at each point to things we can construct from the

spacetime itself. For right now, just think of Tp as an abstract vector space for each point

in spacetime. A (real) vector space is a collection of objects (“vectors”) which, roughly

speaking, can be added together and multiplied by real numbers in a linear way. Thus, for

any two vectors V and W and real numbers a and b, we have

(a + b)(V + W ) = aV + bV + aW + bW . (1.22)

Every vector space has an origin, i.e. a zero vector which functions as an identity element

under vector addition. In many vector spaces there are additional operations such as taking

an inner (dot) product, but this is extra structure over and above the elementary concept of

a vector space.

A vector is a perfectly well-defined geometric object, as is a vector field, defined as a

set of vectors with exactly one at each point in spacetime. (The set of all the tangent spaces

of a manifold M is called the tangent bundle, T (M).) Nevertheless it is often useful for

concrete purposes to decompose vectors into components with respect to some set of basis

vectors. A basis is any set of vectors which both spans the vector space (any vector is

a linear combination of basis vectors) and is linearly independent (no vector in the basis

is a linear combination of other basis vectors). For any given vector space, there will be

an infinite number of legitimate bases, but each basis will consist of the same number of

FIG. 1. Tangent space Tp of a two-dimensional manifold at point p. Reproduced from arXiv:gr-qc/9712019.

With this construction, the action of a dual vector on a vector is something we are quite familiar with

ω(V ) = ωµe
(µ)(V νe(ν))

= ωµV
νe(µ)(e(ν))

= ωµV
νδµν

= ωµV
µ, (3)

which is what we have been calling the inner (or dot) product between dual vector and a vector ω ·V . Note that this
product is the same in every frame. A simple example of a dual vector is the gradient of a scalar function φ, which
we will denote dφ

dφ = (∂µφ)e(µ), (4)

where ∂µ ≡ ∂/∂xµ. Upon a change of coordinates, the components of vectors and dual vectors transform as

V ′µ =
∂x′µ

∂xν
V ν , ω′µ =

∂xν

∂x′µ
ων , (5)

respectively. The corresponding transformation laws for the coordinate basis vectors and dual vectors are

e′(µ) =
∂xν

∂x′µ
e(ν), e′(µ) =

∂x′µ

∂xν
e(ν). (6)
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II. TENSORS

[What is a tensor?] Much like a dual vector is a linear map from vectors to R, a tensor T of rank (k, l) is a
multilinear map from k dual vectors and l vectors to the real numbers

T : T ∗p × . . .× T ∗p︸ ︷︷ ︸
k times

×Tp × . . .× Tp︸ ︷︷ ︸
l times

→ R, (7)

where × is the standard Cartesian product. You should think of the tensor T has a “machine” that “eats” k dual
vectors and l vectors and returns a real number.

[Tensors act linearly on their arguments] As the “multilinear” characteristic implies, tensors act linearly on their
arguments. For instance, for a rank (1, 1) tensor T , we have

T (aω + bη, cV + dW ) = acT (ω,V ) + adT (ω,W ) + bcT (η,V ) + bdT (η,W ) ∈ R, (8)

where a, b, c, d are real numbers, ω, η are dual vectors, and V , W are vectors.

[Components of Tensors] Now, just like we can write vectors and dual vectors in terms of their components in a
coordinate basis, we can write a rank (k, l) tensor in terms of its components is such a basis. To construct a basis for
the space of all (k, l) tensors, we simply take the tensor product ⊗ of k coordinate basis vectors e(µ) and l coordinate

basis dual vectors e(ν)

e(µ1) ⊗ . . . e(µk) ⊗ e(ν1) ⊗ . . .⊗ e(νl). (9)

With this basis, I can write my rank (k, l) tensor T in terms of its components as

T = Tµ1...µk
ν1...νl

e(µ1) ⊗ . . . e(µk) ⊗ e(ν1) ⊗ . . .⊗ e(νl). (10)

[Transformation law for tensors] Now, the abstract tensor T must be the same in every frames. From Eq. (6)
above, I know how my coordinate basis vectors and dual vectors transform under a change of coordinates. We thus
have

T = Tµ1...µk
ν1...νl

e(µ1) ⊗ . . . e(µk) ⊗ e(ν1) ⊗ . . .⊗ e(νl)

= T ′µ1...µk
ν1...νl

e′(µ1)
⊗ . . . e′(µk)

⊗ e′(ν1) ⊗ . . .⊗ e′(νl)

= T ′µ1...µk
ν1...νl

∂xα1

∂x′µ1
e(α1) ⊗ . . .⊗

∂xαk

∂x′µk
e(αk) ⊗

∂x′ν1

∂xβ1
e(β1) ⊗ . . .⊗ ∂x′νl

∂xβl
e(βl), (11)

from which we get

Tα1...αk

β1...βl
=
∂xα1

∂x′µ1
. . .

∂xαk

∂x′µk

∂x′ν1

∂xβ1
. . .

∂x′νl

∂xβl
T ′µ1...µk

ν1...νl
. (12)

Inverting this relationship, we get

T ′µ1...µk
ν1...νl

=
∂x′µ1

∂xα1
. . .

∂x′µk

∂xαk

∂xβ1

∂x′ν1
. . .

∂xβl

∂x′νl
Tα1...αk

β1...βl
. (13)

Equation (13) is the definition of a rank (k, l) tensor. Any object that transforms like in Eq. (13) under a coordinate
transformation x → x′ will be a bone fide rank (k, l) tensor. Note: not every object having k upper indices and l
lower indices is a tensor. We will see some examples of this later on.

[How tensors act on their arguments] Now that we know how component of tensors can be written down in
coordinate bases, we can easily understand how a tensor T acts on its arguments. For instance, for a rank (1, 2)
tensor that takes in two vectors V , W and one dual vectors ω to return a real number, we have

T (ω,V ,W ) = Tµνσe(µ) ⊗ e(ν) ⊗ e(σ)(ωαe
(α), V βe(β),W

γe(γ))

= Tµνσe(µ)(ωαe
(α))⊗ e(ν)(V βe(β))⊗ e(σ)(W γe(γ))

= TµνσωαV
βW γδαµδ

ν
βδ
σ
γ

= TµνσωµV
νWσ ∈ <, (14)
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which is a rather intuitive way for tensors to act on vectors and dual vectors.

[No need to act on all their arguments] While we have defined tensors as multilinear maps from a set of vectors
and dual vectors to the real numbers, we do not always have to act the tensor on its full set of arguments. For
instance, for our rank (1, 2) tensor T above, we can act it on a single vector V to form a perfectly fine rank (1, 1)
tensor S, whose components are given by

Sµν = TµνσV
σ. (15)

I could also act the tensor T on a rank (2, 0) tensor R to form a perfectly fine vector U

Uµ = TµνσR
νσ. (16)

III. TENSORS OPERATIONS

A. Trace

The trace X of a (1, 1) tensor X is

X = Xν
ν . (17)

If you think of Xν
µ has a matrix, then this is just the sum of the diagonal elements. However, if you are given Xµν ,

than X is not the sum of the diagonal elements of Xµν since

X = Xν
ν = gναXαν . (18)

A good example of this the trace of the Minkowski metric ηµν . We might naively think that its trace is−1+1+1+1 = 2,
while in fact it is

ηµνηµν = δµµ = 4. (19)

B. Contraction (or partial tracing)

We can contract one upper and one lower indices from a rank (k, l) tensor to form a (k − 1, l − 1) tensor

Sµρσ = Tµνρσν . (20)

In general, which indices are contracted together is important; different choices will lead to different results, i.e.

Tµνρσν 6= Tµρνσν . (21)

C. Addition

You can add two rank (k, l) tensors to form another rank (k, l) tensor

Tµ1...µk
ν1...νl

= Sµ1...µk
ν1...νl

+ Uµ1...µk
ν1...νl

. (22)

D. Product

We can create a rank (k1 +k2, l1 + l2) tensor by taking the tensor product between a rank (k1, l1) tensor and a rank
(k2, l2) tensor

T
µ1...µk1+k2

ν1...νl1+l2
= S

µ1...µk1
ν1...νl1

⊗ Uµk1+1...µk2
νl1+1...νl2

. (23)
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E. Lowering or raising indices

We can use the metric gµν and inverse metric gµν to raise or lower indices, i.e.

Tµνρσν = gµαgνβgργgσδgνφT
δφ

αβγ . (24)

F. Symmetric and antisymmetric tensors

A tensor is said to be symmetric in two of its first and third indices if

Sµρν = Sνρµ. (25)

Similarly, a tensor is said to be symmetric in its two first indices if

Sµρν = Sρµν . (26)

A tensor is to be symmetric if it is unchanged under all possible permutations of its indices.

Sµρν = Sµνρ = Sρµν = Sρνµ = Sνρµ = Sνµρ. (27)

For instance, the metric is a symmetric (0, 2) tensor since gµν = gνµ. A tensor is said to be antisymmetric in two of
its first and third indices if

Sµρν = −Sνρµ. (28)

Similarly, a tensor is said to be antisymmetric in its two first indices if

Sµρν = −Sρµν . (29)

If a tensor is said to be antisymmetric in all its indices, we just call this tensor antisymmetric (or completely anti-
symmetric).

G. Partial Derivatives

In general, the partial derivative of a tensor is not a tensor. For instance,

T µ
α ν = ∂αR

µ
ν (30)

is not a tensor in a general spacetime (however, it is in flat spacetime). We will soon see how to generalize the notion
of derivative in curved spacetime.


