PHYS 480/581: General Relativity
 Tensors

Prof. Cyr-Racine
(Dated: February 7, 2024)

I. REVIEW OF VECTORS AND DUAL VECTORS

We have seen before that a (four-)vector is an object that lives in the tangent space $T_{p} M$ of some spacetime point p of some manifold M, as illustrated in Fig. 1. Dual vectors (or one-forms) live in what we call the dual vector space (or cotangent space) $T_{p}^{*} M$ at point p. I remind you that dual vectors are linear maps from the original vector space $T_{p} M$ to the real numbers; that is, if $\boldsymbol{\omega} \in T_{p}^{*} M$ is a dual vector, it acts as

$$
\begin{equation*}
\boldsymbol{\omega}(a \boldsymbol{V}+b \boldsymbol{W})=a \boldsymbol{\omega}(\boldsymbol{V})+b \boldsymbol{\omega}(\boldsymbol{W}) \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $\boldsymbol{V}, \boldsymbol{W}$ are vectors, and a, b are real numbers. Again, you should think of a dual vector as a "machine" that "eats" a vector and returns a real number. We have also seen that we can expand a vector in terms of a coordinate basis $\boldsymbol{V}=V^{\mu} \mathbf{e}_{(\mu)}$. We can of course also defined a coordinate basis for dual vectors such that $\boldsymbol{\omega}=\omega_{\mu} \mathbf{e}^{(\mu)}$. The dual basis vector $\mathbf{e}^{(\mu)}$ are defined from the coordinate basis vectors as

$$
\begin{equation*}
\mathbf{e}^{(\nu)}\left(\mathbf{e}_{(\mu)}\right)=\delta_{\mu}^{\nu} \tag{2}
\end{equation*}
$$

FIG. 1. Tangent space T_{p} of a two-dimensional manifold at point p. Reproduced from arXiv:gr-qc/9712019.

With this construction, the action of a dual vector on a vector is something we are quite familiar with

$$
\begin{align*}
\boldsymbol{\omega}(\boldsymbol{V}) & =\omega_{\mu} \mathbf{e}^{(\mu)}\left(V^{\nu} \mathbf{e}_{(\nu)}\right) \\
& =\omega_{\mu} V^{\nu} \mathbf{e}^{(\mu)}\left(\mathbf{e}_{(\nu)}\right) \\
& =\omega_{\mu} V^{\nu} \delta_{\nu}^{\mu} \\
& =\omega_{\mu} V^{\mu}, \tag{3}
\end{align*}
$$

which is what we have been calling the inner (or dot) product between dual vector and a vector $\boldsymbol{\omega} \cdot \boldsymbol{V}$. Note that this product is the same in every frame. A simple example of a dual vector is the gradient of a scalar function ϕ, which we will denote $\mathrm{d} \phi$

$$
\begin{equation*}
\mathrm{d} \phi=\left(\partial_{\mu} \phi\right) \mathbf{e}^{(\mu)} \tag{4}
\end{equation*}
$$

where $\partial_{\mu} \equiv \partial / \partial x^{\mu}$. Upon a change of coordinates, the components of vectors and dual vectors transform as

$$
\begin{equation*}
V^{\prime \mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} V^{\nu}, \quad \omega_{\mu}^{\prime}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \omega_{\nu} \tag{5}
\end{equation*}
$$

respectively. The corresponding transformation laws for the coordinate basis vectors and dual vectors are

$$
\begin{equation*}
\mathbf{e}_{(\mu)}^{\prime}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \mathbf{e}_{(\nu)}, \quad \mathbf{e}^{\prime(\mu)}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} \mathbf{e}^{(\nu)} \tag{6}
\end{equation*}
$$

II. TENSORS

[What is a tensor?] Much like a dual vector is a linear map from vectors to \mathbb{R}, a tensor \boldsymbol{T} of $\operatorname{rank}(k, l)$ is a multilinear map from k dual vectors and l vectors to the real numbers

$$
\begin{equation*}
\boldsymbol{T}: \underbrace{T_{p}^{*} \times \ldots \times T_{p}^{*}}_{k \text { times }} \times \underbrace{T_{p} \times \ldots \times T_{p}}_{l \text { times }} \rightarrow \mathbb{R} \tag{7}
\end{equation*}
$$

where \times is the standard Cartesian product. You should think of the tensor \boldsymbol{T} has a "machine" that "eats" k dual vectors and l vectors and returns a real number.
[Tensors act linearly on their arguments] As the "multilinear" characteristic implies, tensors act linearly on their arguments. For instance, for a rank $(1,1)$ tensor \boldsymbol{T}, we have

$$
\begin{equation*}
\boldsymbol{T}(a \boldsymbol{\omega}+b \boldsymbol{\eta}, c \boldsymbol{V}+d \boldsymbol{W})=a c \boldsymbol{T}(\boldsymbol{\omega}, \boldsymbol{V})+a d \boldsymbol{T}(\boldsymbol{\omega}, \boldsymbol{W})+b c \boldsymbol{T}(\boldsymbol{\eta}, \boldsymbol{V})+b d \boldsymbol{T}(\boldsymbol{\eta}, \boldsymbol{W}) \in \mathbb{R} \tag{8}
\end{equation*}
$$

where a, b, c, d are real numbers, $\boldsymbol{\omega}, \boldsymbol{\eta}$ are dual vectors, and $\boldsymbol{V}, \boldsymbol{W}$ are vectors.
[Components of Tensors] Now, just like we can write vectors and dual vectors in terms of their components in a coordinate basis, we can write a rank (k, l) tensor in terms of its components is such a basis. To construct a basis for the space of all (k, l) tensors, we simply take the tensor product \otimes of k coordinate basis vectors $\mathbf{e}_{(\mu)}$ and l coordinate basis dual vectors $\mathbf{e}^{(\nu)}$

$$
\begin{equation*}
\mathbf{e}_{\left(\mu_{1}\right)} \otimes \ldots \mathbf{e}_{\left(\mu_{k}\right)} \otimes \mathbf{e}^{\left(\nu_{1}\right)} \otimes \ldots \otimes \mathbf{e}^{\left(\nu_{l}\right)} \tag{9}
\end{equation*}
$$

With this basis, I can write my rank (k, l) tensor \boldsymbol{T} in terms of its components as

$$
\begin{equation*}
\boldsymbol{T}=T_{\nu_{1} \ldots \nu_{l}}^{\mu_{1} \ldots \mu_{k}} \mathbf{e}_{\left(\mu_{1}\right)} \otimes \ldots \mathbf{e}_{\left(\mu_{k}\right)} \otimes \mathbf{e}^{\left(\nu_{1}\right)} \otimes \ldots \otimes \mathbf{e}^{\left(\nu_{l}\right)} \tag{10}
\end{equation*}
$$

[Transformation law for tensors] Now, the abstract tensor \boldsymbol{T} must be the same in every frames. From Eq. (6) above, I know how my coordinate basis vectors and dual vectors transform under a change of coordinates. We thus have

$$
\begin{align*}
\boldsymbol{T} & =T_{\nu_{1} \ldots \nu_{l}}^{\mu_{1} \ldots \mu_{k}} \mathbf{e}_{\left(\mu_{1}\right)} \otimes \ldots \mathbf{e}_{\left(\mu_{k}\right)} \otimes \mathbf{e}^{\left(\nu_{1}\right)} \otimes \ldots \otimes \mathbf{e}^{\left(\nu_{l}\right)} \\
& =T_{\nu_{1} \ldots \nu_{l}}^{\prime \mu_{1} \ldots \mu_{k}} \mathbf{e}_{\left(\mu_{1}\right)}^{\prime} \otimes \ldots \mathbf{e}_{\left(\mu_{k}\right)}^{\prime} \otimes \mathbf{e}^{\prime\left(\nu_{1}\right)} \otimes \ldots \otimes \mathbf{e}^{\prime\left(\nu_{l}\right)} \\
& =T^{\prime \mu_{1} \ldots \mu_{k}}{ }_{\nu_{1} \ldots \nu_{l}} \frac{\partial x^{\alpha_{1}}}{\partial x^{\prime \mu_{1}}} \mathbf{e}_{\left(\alpha_{1}\right)} \otimes \ldots \otimes \frac{\partial x^{\alpha_{k}}}{\partial x^{\prime \mu_{k}}} \mathbf{e}_{\left(\alpha_{k}\right)} \otimes \frac{\partial x^{\prime \nu_{1}}}{\partial x^{\beta_{1}}} \mathbf{e}^{\left(\beta_{1}\right)} \otimes \ldots \otimes \frac{\partial x^{\prime \nu_{l}}}{\partial x^{\beta_{l}}} \mathbf{e}^{\left(\beta_{l}\right)}, \tag{11}
\end{align*}
$$

from which we get

$$
\begin{equation*}
T_{\beta_{1} \ldots \beta_{l}}^{\alpha_{1} \ldots \alpha_{k}}=\frac{\partial x^{\alpha_{1}}}{\partial x^{\prime \mu_{1}}} \cdots \frac{\partial x^{\alpha_{k}}}{\partial x^{\prime \mu_{k}}} \frac{\partial x^{\prime \nu_{1}}}{\partial x^{\beta_{1}}} \cdots \frac{\partial x^{\prime \nu_{l}}}{\partial x^{\beta_{l}}} T^{\prime \mu_{1} \ldots \mu_{k} \ldots \nu_{l}} . \tag{12}
\end{equation*}
$$

Inverting this relationship, we get

$$
\begin{equation*}
T_{\nu_{1} \ldots \nu_{l}}^{\mu_{1} \ldots \mu_{k}}=\frac{\partial x^{\prime \mu_{1}}}{\partial x^{\alpha_{1}}} \ldots \frac{\partial x^{\prime \mu_{k}}}{\partial x^{\alpha_{k}}} \frac{\partial x^{\beta_{1}}}{\partial x^{\nu_{1}}} \ldots \frac{\partial x^{\beta_{l}}}{\partial x^{\prime \nu_{l}}} T_{\beta_{1} \ldots \beta_{l}}^{\alpha_{1} \ldots \alpha_{k}} \tag{13}
\end{equation*}
$$

Equation (13) is the definition of a rank (k, l) tensor. Any object that transforms like in Eq. (13) under a coordinate transformation $x \rightarrow x^{\prime}$ will be a bone fide rank (k, l) tensor. Note: not every object having k upper indices and l lower indices is a tensor. We will see some examples of this later on.
[How tensors act on their arguments] Now that we know how component of tensors can be written down in coordinate bases, we can easily understand how a tensor \boldsymbol{T} acts on its arguments. For instance, for a rank $(1,2)$ tensor that takes in two vectors $\boldsymbol{V}, \boldsymbol{W}$ and one dual vectors $\boldsymbol{\omega}$ to return a real number, we have

$$
\begin{align*}
\boldsymbol{T}(\boldsymbol{\omega}, \boldsymbol{V}, \boldsymbol{W}) & =T_{\nu \sigma}^{\mu} \mathbf{e}_{(\mu)} \otimes \mathbf{e}^{(\nu)} \otimes \mathbf{e}^{(\sigma)}\left(\omega_{\alpha} \mathbf{e}^{(\alpha)}, V^{\beta} \mathbf{e}_{(\beta)}, W^{\gamma} \mathbf{e}_{(\gamma)}\right) \\
& =T_{\nu \sigma}^{\mu} \mathbf{e}_{(\mu)}\left(\omega_{\alpha} \mathbf{e}^{(\alpha)}\right) \otimes \mathbf{e}^{(\nu)}\left(V^{\beta} \mathbf{e}_{(\beta)}\right) \otimes \mathbf{e}^{(\sigma)}\left(W^{\gamma} \mathbf{e}_{(\gamma)}\right) \\
& =T_{\nu \sigma}^{\mu} \omega_{\alpha} V^{\beta} W^{\gamma} \delta_{\mu}^{\alpha} \delta_{\beta}^{\nu} \delta_{\gamma}^{\sigma} \\
& =T_{\nu \sigma}^{\mu} \omega_{\mu} V^{\nu} W^{\sigma} \in \Re, \tag{14}
\end{align*}
$$

which is a rather intuitive way for tensors to act on vectors and dual vectors.
[No need to act on all their arguments] While we have defined tensors as multilinear maps from a set of vectors and dual vectors to the real numbers, we do not always have to act the tensor on its full set of arguments. For instance, for our rank $(1,2)$ tensor \boldsymbol{T} above, we can act it on a single vector \boldsymbol{V} to form a perfectly fine rank $(1,1)$ tensor \boldsymbol{S}, whose components are given by

$$
\begin{equation*}
S_{\nu}^{\mu}=T_{\nu \sigma}^{\mu} V^{\sigma} . \tag{15}
\end{equation*}
$$

I could also act the tensor \boldsymbol{T} on a rank $(2,0)$ tensor \boldsymbol{R} to form a perfectly fine vector \boldsymbol{U}

$$
\begin{equation*}
U^{\mu}=T_{\nu \sigma}^{\mu} R^{\nu \sigma} \tag{16}
\end{equation*}
$$

III. TENSORS OPERATIONS

A. Trace

The trace X of a $(1,1)$ tensor \boldsymbol{X} is

$$
\begin{equation*}
X=X_{\nu}^{\nu} \tag{17}
\end{equation*}
$$

If you think of $X^{\nu}{ }_{\mu}$ has a matrix, then this is just the sum of the diagonal elements. However, if you are given $X_{\mu \nu}$, than X is not the sum of the diagonal elements of $X_{\mu \nu}$ since

$$
\begin{equation*}
X=X_{\nu}^{\nu}=g^{\nu \alpha} X_{\alpha \nu} \tag{18}
\end{equation*}
$$

A good example of this the trace of the Minkowski metric $\eta_{\mu \nu}$. We might naively think that its trace is $-1+1+1+1=2$, while in fact it is

$$
\begin{equation*}
\eta^{\mu \nu} \eta_{\mu \nu}=\delta_{\mu}^{\mu}=4 \tag{19}
\end{equation*}
$$

B. Contraction (or partial tracing)

We can contract one upper and one lower indices from a rank (k, l) tensor to form a $(k-1, l-1)$ tensor

$$
\begin{equation*}
S_{\sigma}^{\mu \rho}=T_{\sigma \nu}^{\mu \nu \rho} \tag{20}
\end{equation*}
$$

In general, which indices are contracted together is important; different choices will lead to different results, i.e.

$$
\begin{equation*}
T_{\sigma \nu}^{\mu \nu \rho} \neq T^{\mu \rho \nu}{ }_{\sigma \nu} . \tag{21}
\end{equation*}
$$

C. Addition

You can add two rank (k, l) tensors to form another rank (k, l) tensor

$$
\begin{equation*}
T_{\nu_{1} \ldots \nu_{l}}^{\mu_{1} \ldots \mu_{k}}=S_{\nu_{1} \ldots \nu_{l}}^{\mu_{1} \ldots \mu_{k}}+U_{\nu_{1} \ldots \nu_{l}}^{\mu_{1} \ldots \mu_{k}} . \tag{22}
\end{equation*}
$$

D. Product

We can create a rank $\left(k_{1}+k_{2}, l_{1}+l_{2}\right)$ tensor by taking the tensor product between a rank $\left(k_{1}, l_{1}\right)$ tensor and a rank $\left(k_{2}, l_{2}\right)$ tensor

$$
\begin{equation*}
T_{\substack{\nu_{1} \ldots \mu_{k_{1}+k_{2}} \ldots \nu_{l_{1}+l_{2}}}}^{\nu_{\nu_{1}} \ldots \nu_{l_{1}}} S_{\nu_{l_{1}+1} \ldots \nu_{l_{2}}}^{\mu_{1} \ldots \mu_{k_{1}}} . \tag{23}
\end{equation*}
$$

E. Lowering or raising indices

We can use the metric $g_{\mu \nu}$ and inverse metric $g^{\mu \nu}$ to raise or lower indices, i.e.

$$
\begin{equation*}
T_{\sigma \nu}^{\mu \nu \rho}=g^{\mu \alpha} g^{\nu \beta} g^{\rho \gamma} g_{\sigma \delta} g_{\nu \phi} T_{\alpha \beta \gamma}{ }^{\delta \phi} . \tag{24}
\end{equation*}
$$

F. Symmetric and antisymmetric tensors

A tensor is said to be symmetric in two of its first and third indices if

$$
\begin{equation*}
S_{\mu \rho \nu}=S_{\nu \rho \mu} \tag{25}
\end{equation*}
$$

Similarly, a tensor is said to be symmetric in its two first indices if

$$
\begin{equation*}
S_{\mu \rho \nu}=S_{\rho \mu \nu} \tag{26}
\end{equation*}
$$

A tensor is to be symmetric if it is unchanged under all possible permutations of its indices.

$$
\begin{equation*}
S_{\mu \rho \nu}=S_{\mu \nu \rho}=S_{\rho \mu \nu}=S_{\rho \nu \mu}=S_{\nu \rho \mu}=S_{\nu \mu \rho} \tag{27}
\end{equation*}
$$

For instance, the metric is a symmetric $(0,2)$ tensor since $g_{\mu \nu}=g_{\nu \mu}$. A tensor is said to be antisymmetric in two of its first and third indices if

$$
\begin{equation*}
S_{\mu \rho \nu}=-S_{\nu \rho \mu} \tag{28}
\end{equation*}
$$

Similarly, a tensor is said to be antisymmetric in its two first indices if

$$
\begin{equation*}
S_{\mu \rho \nu}=-S_{\rho \mu \nu} \tag{29}
\end{equation*}
$$

If a tensor is said to be antisymmetric in all its indices, we just call this tensor antisymmetric (or completely antisymmetric).

G. Partial Derivatives

In general, the partial derivative of a tensor is not a tensor. For instance,

$$
\begin{equation*}
T_{\alpha}{ }^{\mu}{ }_{\nu}=\partial_{\alpha} R_{\nu}^{\mu} \tag{30}
\end{equation*}
$$

is not a tensor in a general spacetime (however, it is in flat spacetime). We will soon see how to generalize the notion of derivative in curved spacetime.

